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ABSTRACT.

The usual method of optimizing a powerplant conduit is 1o estimate the capital cost and add this to the present worth of the
lost benefits, for a range of conduit sizes. This proceedure is time consuming since it is ofien necessary to estimate costs and
benefits for 6 or more conduit sizes in order to reach the optimum. An alternative proceedure is to develop an equation for
costs and lost benefits as a function of conduit diameter, as proposed by Fahlbusch (1), differentiate this equation with
respect to diameter, equate to zero, and solve for diameter to obtain the optimum. This paper provides all nesessary
equations in the Y-siep proceedure, includes a method to take into account diferent operating modes - peaking or base
loaded, and also includes two worked examples, one based on a proposed powerplant in the Northwest Territories, and the
second on a high pressure steel penstock for an impulse unit in South America,

1. STEP#1- ASSEMBLE ALL DATA.

The following data is required. To illustrate the analysis, values for the various factors are provided beside each factor, to be
used in the worked example. Where values are not provided for d, F, and R, these are calculated in later steps.

= ().012 = Conduit friction coefficient, decimal.
= $900 = Value of capacity, $/kW.

49 = Average annual flow in m3.sec’!.

= 66 = Rated turbine flow in m3 sec”!.

= Plant operating loss coefficient, decimal.

= $0.10 = Value of energy in $/kWh.

= 60 = Plani life in years,

= ().74 = Plant capacity factor, decimal.
Water conduit diameter, in meters.

(1875 = Average plant efficiency, decimal.
Conduit friction head loss, in meters.

= 22.5 = Turbine rated head, in meters.

= 7% = Real interest rate for present worth.
= 370 = Conduit length, in meters.
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2.STEP # 2 - CALCULATE PLANT OPERATING LOSS COEFICIENT.

The plant capacity factor can vary from a high of about (.75 for a basc loaded plant to a low of about 0.2 for a peaking
plant, and the daily load pattern can vary widely from operation at full load for only a few hours, with the remainder of the
time at part load in a base loaded plant, to operation at full load for only a few hours in a peaking plant. Since the hydraulic
losses are proportional to the flow squared, the losses are a function of the daily load pattern. The plant operating loss
coefficient is defined as the ratio of the average daily loss divided by the loss at full load, if the plant were operated for a
time equal to 8760 hours times the plant capacity factor, calculated from:-

R =X Sum of flow squared by time of flow duration, divided by capacity factor
R=ZQ@ xt/c 1.

Where t = the number of hours the plant can be operated at full load, based on the available water supply. For example, a
plant with a capacity factor of 0.6 could be operated for 60% of the time at 100% flow, would have a loss coefficient of:-

R=12x06/06=1
On the other hand. the plant could theoretically be operated at 60% flow for 100% of the time, with a loss coefficient of:-
R=062x1/06=06
In this case the loss coefficient is equal to the plant capacity factor. In practise, the loss coefficient will be somewhere
between these two extremes, closer to the lower limit in high capacity factor plants and closer to the upper limit in peaking

plants, For the worked example, the proposed powerplant will have 2 units supplying power to an isolated community. Both
units are not expected to be operated jointly at full load, due to the lack of load, and are expected to operate as follows:-

O4tat 085Q = 034 QL= 0289 Q%

0.2ta 0.75Q = 0.15Qt = 0.1125Q%

04t at 063Q = 0250Qt = 0.1588 Q4
Totals 1.0t 0.74Qt  0.5603 Q%

In this case the plant can operate for 74% of time at full load and thus R = (.56 / 0.L.74 = (.755

3. STEP # 3 - DETERMINE PRESENT WORTH OF ANNUAL LOST INCOME PER METER OF HEAD LOSS.
The average annual income from the production of energy, per meter of head is:-
Income ($) = 981 x q x' 1.0 x e x 8760 x W 24

The total value of lost energy would then be the value of (2) times the present worth factor. With a real interest rate of 7%
and a plant life of 60 years, the present worth factor is 14.04,. To continue with the worked example, encrgy loss value is:-

Value = 98] x 49 x 1 x 0.875 x 8760 x 0.10 x 14.04 = £ 5.173 million.
IT there is a value placed on lost capacity, then this can be calculated for one meter of head from:-
Capacity value (3) = 98]l x Q x 10 xe x P 3

To continue with the example, assuming a diesel life of 20 years, replacement would take place in years 20 and 40, The
present worth factor of this at 7% interest is = 1 + 1.072% + 1.074¢ = 1.325. Capacity value is then:-

Value = 981 x 66 x 1.0 x 0.875 x $900 x 1.325 = $0.675 million.

The total value of one meter of head loss is then = $5.173 + 0.675 = § 5.848 million.
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4. STEP # 4 - DETERMINE A PRELIMINARY DIAMETER BY FORMULA.

To cost the conduit, a preliminary diameter is required, and for accuracy, this preliminary diameter should not be too far off
the most economic diameter. There is a rule of thumb which states that the head losses in a high capacity factor plant
should be in the region of 3% to 4% and in a low capacity factor plant, in the region of 6% to 8%. A simple formula which

expresses this rule is:-
F=008 x(1-c)xh 4.

This formula results in a plant having a capacity factor of 0.2, would have hydraulic losses equal to 6.4% of head, and at a
capacity factor of 0.6, the hydraulic losses would reduce to 3.2% of head. Formula 4 can then be combined with the
Manning formula for hydraulic losses, and assuming a friction coefficient of 0.01153 as being representative of steel or
concrete, the following formula can be derived for the diameter of a conduit:-

d = 0466 x QP37 x L0 x w019 x (1-c)01? 5
However, this formula docs not work when the ratio of conduit length to head is less than about 6. In such cases, the head
loss through the trashracks and intake become relatively high, compared to the friction loss. Hence, for short conduits, the
formulae developed by Fahlbusch (1) or Sarkaria (2) should be used, namely:-

d =052 x kWi 3 57 6.

where kW = plant capacity. By combining equation 6 with the power formula kW = 9.81 Q h e, and assuming an overall
turbine - generator efficiency of 90%, formula 6 can be re-written as:-

d = 133 x Q043 x poM4 T
Depending on the conduit o head ratio, either formulae 5 or 7 can be used to oblain a preliminary conduit diameter. To
continue with the example, with a length to head ratio = 370/ 22,5 = 16.4 , use formula 5 to determine the diameter to be

used for costing as follows:-

d = 0466 x 66°37 x 370017 x 225019 x (1-0742)%1% = 483 m.

5.STEP # 5 - DETERMINE HEAD LOSS AS A FUNCTION OF CONDUIT DIAMETER.
The Manning equation for friction losses in a circular conduit can be re-writlen as:-
F(max) = 104 x Q? x n? x L x ¢33 8.
Since Q, n and L are all known quantities, the head loss becomes a function of the diameter. Other formulae for friction loss
can be substituted, but the Manning equation is the simplest to use. Equation 6 will give the head loss at full flow. Since the

plant could be operated at part load, the full load head loss has to be adjusted to reflect the operating mode. This is
accomplished by multiplying by the plant operating loss coeflicient R. Hence:-

Flaverage) = 104 x R x @ x n? x L x ¢33 9.
This is an important step, since it could result in a smaller economic diameter, thus improving the cconomic viability of the
project. For instance, in the worked example, the cost saving is almost 8% when the operating mode is taken into account.
The powerplant will have a concrete lined tunnel of inverted D shape, and the head loss, as a function of diameter is:-
Fimax) = {Q x n x (0.893d?)! x (025d)' 12 x L

WithQ = 66, n = 0.012 and L = 370, the friction loss formula becomes F = 1850 d-3-33, adjusted for the flow pattern

F(average) = 0.755 x 1850 d333 = 1397 ¢33




6. STEP # 6 - DETERMINE CONDUIT COST FOR THE PRELIMINARY DIAMETER.

From the project drawings, determine the cost of the water conduit, using the preliminary diameter determined in step 4.
Include in the cost any appurtenances associated with the conduit such as a surge tank. The cost of the conduit can be
assumed to be a function of the diameter squared. For a fixed length, excavation volumes vary with diameter squared, and
concrete or steel linings, for the same pressure head and length, also vary with the diameter squared.

The conduit cost should then be converted into an equation which is a function of the diameter squared, by dividing the
estimated cost by the diameter squared. If the conduit has several diameters, select an average representative diameter. If the
analysis indicates that the most economic diameter is, say, 10% larger than the costed representative diameter, then increase
all diameters by 10%%,

For the example, it was decided to estimate the cost of a 4.9 meter inverted D shaped concrete lined tunnel, surge tank and
very short penstock. This was found to total $ 5.3 million, not including any overhead costs such as contractor's move-in or
move-oul eXpenses, camp cost, engineering, contingencies and interest. In other words, only the direct construction cost was
estimated. This was to allow for the fact that for a small change in the volume of work, the change in cost is lower than the
multiple of the change in volume times the unit price. Expressing the cost as a function of the diameter squared:-

Cost = $ 5.3 divided by 4.9% = $0.221 d? million.

7.STEP # 7 - DETERMINE PRESENT WORTH OF HEAD LOSS AS A FUNCTION OF THE DIAMETER.

This is simply the product of the total present worth (equations 2 + 3 ) per meter of head loss, times the head loss as a
function of diameter from equation 9. The example value is then:-

Value = $5.848 x 1397 x d*33 million. = $ 8,169 x %33 million.

8. STEP#8 - DETERMINE TOTAL COST (PRESENT WORTH + CONSTRUCTION) AS FUNCTION OF DIAM.

The total cost is the addition of the total present worth determined in step 7, plus the construction cost determined in step 6.
For the example, this becomes:-

Total cost = $8,169d33 x 10 + 0.221d2 x 108,

9, STEP # 9 - DIFFERENTIATE AND EQUATE TO ZERO.

The equation obtained in step 8 is now differentiated with respect to diameter and then equated to zero Lo obtain the
minima. The resulting equation is solved for d to obtain the most economic diameter. Other more complex conduits can be
optimised in a simmilar manner. Where there is - for example - a tunnel followed by a long penstock, each should be
optimized independently. In other cases where the water conduit is relatively short, and the intake comprises a large
proportion of the cost, the intake should be included in the cost, with the cost being a function of the diameter cubed. This
adds another term to the differential equation, but does not prevent solving for the diameter.

Returning to the example, differentiate the total cost equation and equate (o zero:-

ACost/Ad = {-5.33 x 8,169d%33 + 2 x 0.221d}x 10 =0
d™33 = 533 x 8,169 x 27! x 0.221"! = 98,508
d = 4.80 meters.

The economic diameter is then 4.8 melers, or slightly less than the preliminary diameter of 4.83 meters calculated in step 4.
The close agreement belween preliminary and final diameters is a coincidence in this example. Usually the difference is
larger. Finally, to see what effect inclusion of the overhead costs would have on the economic diameter, these were added to
the cost. For the remote location of the powerplant, in the Northwest Territories, overhead costs are very high as a
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proportion of the direct cost. The cost was found to increase by 60% with the addition of contractor's move in-out expenses,
camp operation, engineering and interest. This would result in a tunnel diameter of 4.50 meters or just over 6% smaller, for
a small cost saving of less than 2% of the total project cost. However, the author is of the opinion that such an interpretation
of the analysis will result in too small a tunnel diameter, since overhead costs are not directly tied to the volume of work,

1. PENSTOCK STEEL CASE WITH DIRECT DIFFERENTIATION.

For the second worked example, the author has selected a high head powerplant in the Andes of South America, to illustrate
the direct use of differentiation in a case where the construction cost is a function of the diameter. The plant will have a
700m. long horizontal steel penstock in a tunnel leading to an undeground powerhouse containing two impulse turbines
operating under a rated head of 1022m., to which 25% should be added for waterhammer at the downstream end of the
penstock. Average waterhammer on the 700m. long pipe is 20%. Rated flow is 7 cumecs. Plant capacity factor is 0.2 and
the operating loss coefficient is 1.0. Turbine-generator efficiency is 0.882. Capacity is valued at $75 per annum per kW and
energy at $0.0512 per kWh. Present worth factor is 9.97 based on a plant life of 60 years and a real interest rate of 10%.
Cost of the steel penstock is $5.00 per kg., installed.

At this point the author assumes that the reader is familiar with the various steps. In the interest of saving space, the steps
are eliminated, and the source of the numbers in the calculations can be traced by their values.

A preliminary diameter for the penstock can be calculated from formula 7 as follows:-
d =133 x 799 x 1022014 = 116 m.

Manning's formula should not be used for small pipes since it underestimaies the friction loss. Instead use the metric
version of the Hazen-Williams formula, which can be derived from data by Merrit (3) as follows:-

F=108 x C!8 x L x QI8 x ¢4% 10.
where C = friction coefficient, which has a value of 115 for welded steel pipe. Head loss due to friction is then:-
F= 108 x 1153 x 700 x 718 x 4487 = 4262 x a4¥
And the present worth of energy and capacity will be:-
PW.energy =$997 x 981 x 7 x 4262 x d*% x 0882 x 8760 x 0.2 x 0.0512 =%2308,500 x d*%
PW. capacity = $ 997 x 981 x 7 x 4262 x d*57 x 0882 x 75 =% 1,930,200 x d*%7
Total P.W. = $4,238,700 x d*%7

To determine the cost of the penstock, the weight of steel needs to be calculated. The penstock thickness formula is:-

t =98l xdxhx(2x85 xJ])! + corrosion allowance. i1,
Where t = sieel thickness in mm. J = weld joint efficiency = 1.0
S = allowable steel stress in MPa. h = pressure head including waterhammer

For such a high head penstock, high strength quenched and tempered steel would be used to reduce weight. The allowable

stress for Q&T steel is 263 MPa. (5). Corrosion allowance should be 1.5 mm., which can be simulated with a thickness

increase of 3%, based on the preliminary diameter and thickness from formula 11. Average pipe thickness is then:-
1=981 xdx 1022 x 1.20 x 0.5 x 263! x 105 = 2402 x d mm.

and cost, based on steel weight of 7.85 kg per square meter per millimeter thickness, $ 5.00 per kg. will be:-

Cost =8 xdx700 x2402 xdx785x5=252073300 x d?




Total of construction cost and present worth of benefits is then:-
Cost = $2,073,300 x d? + 4,238,700 x d*%7,
and differentiating with respect to diameter:-
ACost/Ad = 2 x 2,073,300 x d -{ 4.87 x 4,238,700 x &3%7 }

4587 = 487 x 4.2387 x (2 x 2.0733)! = 49782 and d = 1.26 m.

Maximum penstock steel thickness isthen t = 9.81 x 1.26 x 1022 x 1.25 x 0.5 x 263! + L5 = 315mm.

In this case the most economic diameter is 8.6% larger than that determined from the Fahlbush formula. For interest, this
result can be compared with that obtained from the equation 1-15 given in reference 4, page 19, at 1.20m. The smaller
economic diameter is probably due to use of the Darcy-Weisbach friction equation which produces a lower estimate of
friction loss. { Note that equation 1-15 contains a typographical error, the constant should be 0.5, not 0.05.)

11. CONCLUSIONS.

The two examples illustrate how differential claculus can simplify the calculation of the economic conduit diameter, by
eliminating the multiple cost estimates required in the graphical approach. However, it must be remembered that the

diameter selected for the preliminary cost estimate, must be reasonably close to the economic diameter, and this is where
formulae #6 and #7 will prove most useful.
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