Implementation of the Swiss regulatory context from an operator perspective

IEA Hydropower Brussels, 29.5.2017 S. Schweizer, Head of Group Ecology KWO

Content

1)General Introduction Switzerland 2) The Swiss Law(s) 2.1) Residual Flow 2.2) Hydropeaking 2.3) Fishmigration 2.4) Graveltransport 3) Case Study Hasliaare 4) Most Important Knowledge caps

1. Introduction – Situation in Swizzerland

Energy Situation in Switzerland

- About 55% Hydro Power Plants
- About 40% Nuclear Power Plants
- About 5% others

Goals of Energy Strategy

- Reduction of Nuclear Power Plants
- No Thermal Power Plants
- Slight increase of Hydropower
- Increase in Photovoltaik and Wind
- Decrease of Energy Consumption

Challenges of Swiss Energy Strategy

- Slight Increase of Hydropower
 → with higher standards of residual flows...
- Increase in Photovoltaik and Wind
 → Landscape issues...
- Decrease of Energy Consumption
 → Capitalism...
- Net Stability:
 - Short Term Fluctuations
 → Hydropower / Pumpstorage
 Seasonal Storage
 → from Summer into Winter

(new reservoirs)...

Main Impacts of Hydropower on Aquatic Organisms

- Residual Flow
- Hydropeaking
- Fish Migration
- Graveltransport / Flood-Dynamics
- Morpholocial Impacts
- Ponding

2.1 Swiss Law – Residual Flow

- Usually, a concession lasts 60 to 80 years
- Hydropowerplants pay "Wasserzinsen" ≈ 1.2 Cent / KWh
- Definition of Residual Flow depends on:
 - Natural Minimum Flow Q₃₄₇
 - Occurrence of Fish
 - Occurrence of protected species / habitats
 - Ecological Potencial
 - Fish Migration
 - Landscape Issues
 - Seasonal Aspects
 - Morphological Measures
 - Aspects for Hydropower Production

Since 2011 Further Requirements of the Swiss Law

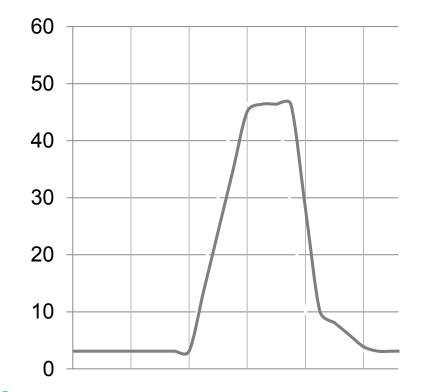
- Until 2030: Mitigation of
 - Hydropeaking
 - Gravel Transport (Power Plants & Canton)
 - Fish Migration (Power Plants & Canton)
 - → Payed by Energy Consumers (0.1 Rp/KWh (Powerplants pay «Wasserzinsen» = 1.2 Rp/KWh)

Hydropeaking

- «Mitigation of Hydropeaking: no significant Impacts on aquatic Flora and Fauna»
 - «under Restriction of Commensurability» (Disproportional Costs)
 - With Constructional Measures
 Operational Measures only when Owner of the Powerplant agrees

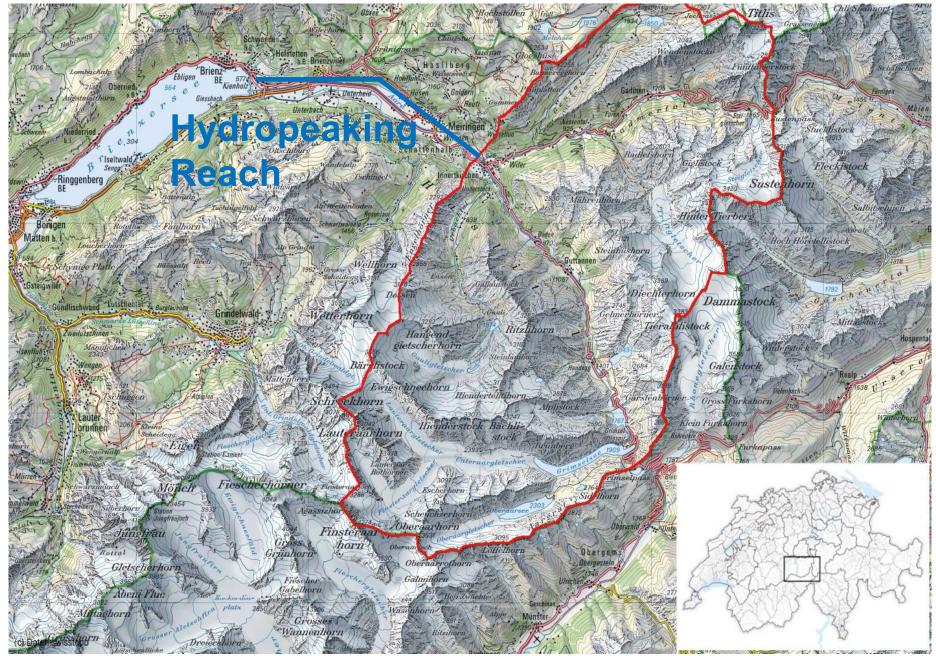
Vollzugshilfe II "Hydropeaking Measures" (2017)

 \rightarrow Selection of the Adequate Measure(s)


All Indicators can be modelled and are sensitive to hydropeaking

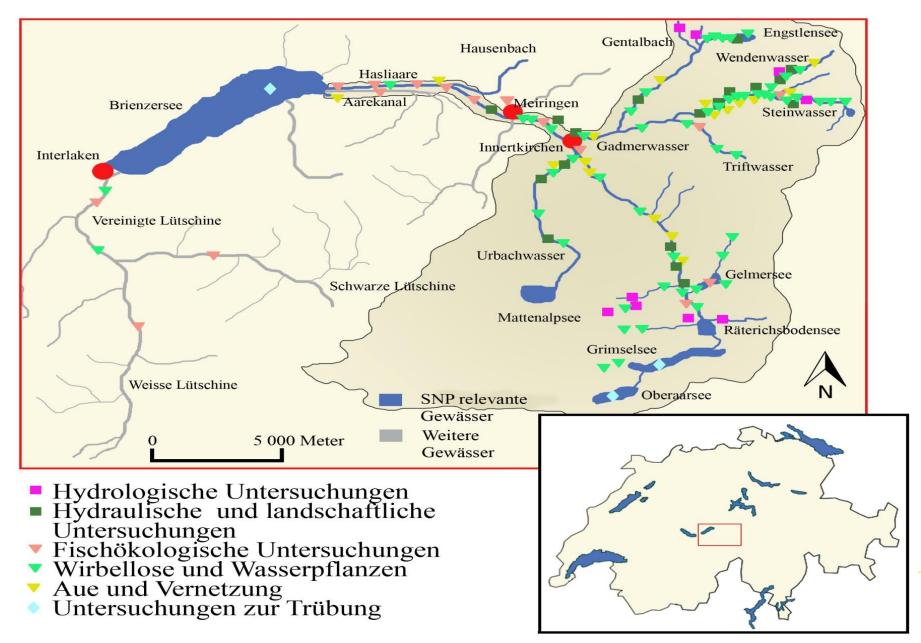
Core Indicators

F2 Stranding of FishF3 Spawning of FishQ1 WatertemperatureF6 Habitat of FishB5 Habitat Macrozoobenthos


Further Indicators D1 Drifting of Macrozoobenthos

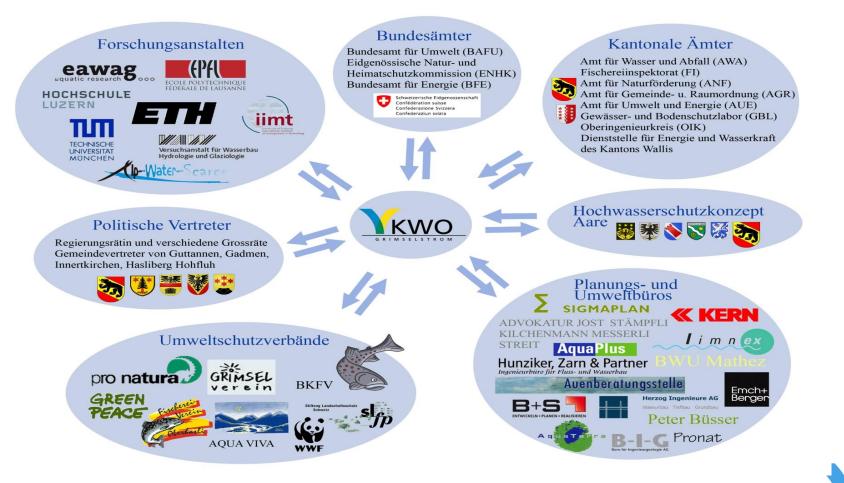
H1 Clogging

3. Introduction Case Study Hasliaare



Site Characteristics

- Area 450 km² with Aare- (Grimselgebiet) and Gadmental (Sustengebiet)
- 21% Glaciers, Precipitaion per year ± 2000mm
- Glacial Discharge Regime
- MQ at Innertkirchen 35 m³/s
- Energy Production KWO 2500 GWh/a (inkl. 800 GWh/a Pump-Storage)



Ecological Investigations

Participation Process defining

- Residual Flow
- Ecological Measures
- Power Plant Extensions (+10% without taking more water)

 \rightarrow More than 150 persons have been involved ¹³

Overview Ecological Measures

40 Dotation Engstlenseeausfluss 200 1/s 18 Rückbau Fassung Moosbachquellen u. Moosb

54 Aufwertung Schwemmebene

vald (25% Beitrag für neuen Verlauf Hüsenbach)

erung Brunnenquellen

42 Dotation Wenden bis max. 60 I/s

39 Dotation Leimboden 25 - 50 l/s

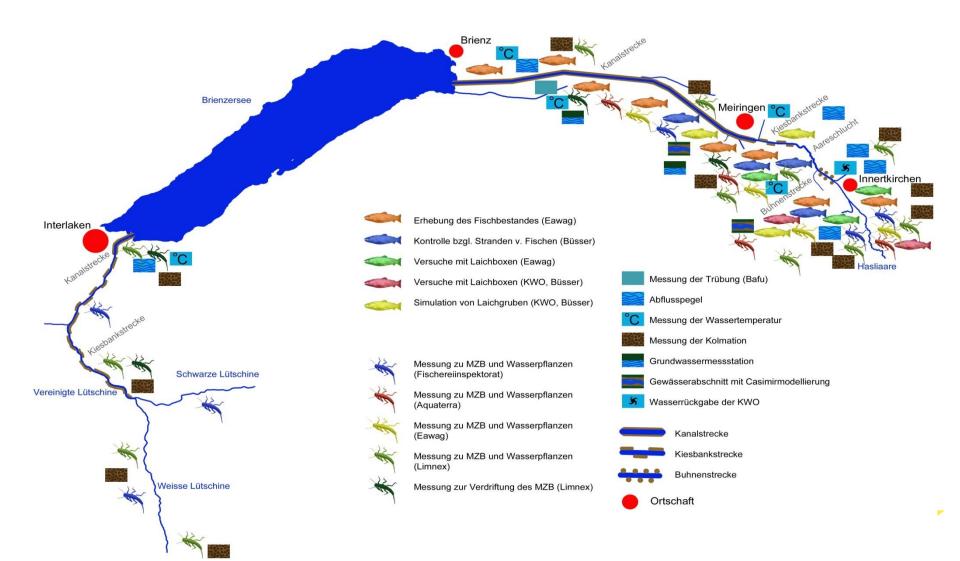
41 Dotation Stein bis max. 60 l/s

71 Aufwertung Aare unterhalb Aareschlucht 81 Dotation Hopflauenen 300 l/s 30 Neue Auenlandschaft Furen-Süd

61 Verzicht auf zukünftige Nutzung Tobigerbach

46 Längsvernelzung Glessenbach

34 Dotation ab Sekundärfassung Mattenalp 25-50 I/s 🕥 86 Aufgabe Sekundärfassung Mattenalp


63 Verzicht auf eine spätere Nutzung Diechterbach

76 Dotation Grubenbach 15 l/s

77 Dotation Rabo, Nutzungsaufgabe Hangkanal 0-250 //s

Mitigation of Hydropeaking • MQ = $35 \text{ m}^3/\text{s}$ Q_{Summer} = $100 \text{ m}^3/\text{s}$ $Q_{Winter} = 2 \text{ m}^3/\text{s}$ • $Q_{Sunk} = 3 \text{ m}^3/\text{s}$ $Q_{Schwall} = 95 \text{ m}^3/\text{s}$ **Gravel Bar** Groyens Channel Innertkirchen Meiringen **Meiringen-Brienz** Width 25 m Width 25 m Width 18 m

Aquatic Investigations with respect to Hydropeaking

Ecological Evaluation of different Mitigation Measures

- V = 50'000 m³
 V = 80'000 m³
- V = 60'000 m³ V = 100'000 m³

Decreasing Ramping Rates / Increasing Reaction Time

• Tunnel to Lake of Brienz (20 km) \rightarrow too expensive

We have been "too early" and had to apply Vollzugshilfe I (developped for evaluation of actual state)

Sanierung Schwall-Sunk
 Strategische Planung

Evaluation from Experts (Experience, Literature, Conclusions by Analogy) ...

...with some Uncertainty

Gesamtbewertung

				\checkmark		
	I	50	60	80	100	Remarks
Clogging						Weak
Watertemperature						Weak Impact
Base Flow						Higher than natural Q ₃₄₇
Biomasse MZB						Zust. III: Reduction of Drifting
MSK MZB						
Zonation MZB						Zust. III: Reduction of Drifting
EPT MZB						
MSK Fische						Natural Flow Regime is lacking of Habitats for juvenile Fish due to Channelisation
Stranding of Fish						Reduction of Downramping Rate
Spawning of Fish						Spawning Areas stable at maximum Flow and never dry
Juvenile Fish						Compare MSK Fische
Productivity of Fish						Compare MSK Fische

Selection of Scenario V = 80'000 m³

- Volume of Retetion Basin = 20'000 m³
- Volume of Gallery (from Powerplant INN1 to Retention Basin) = 60'000 m³

Evaluation of all Experts

 To improve Situation for juvenile Fish (Indicator F4) the Morphology has to be ameliorated (independently from Hydropeaking the main Problem)

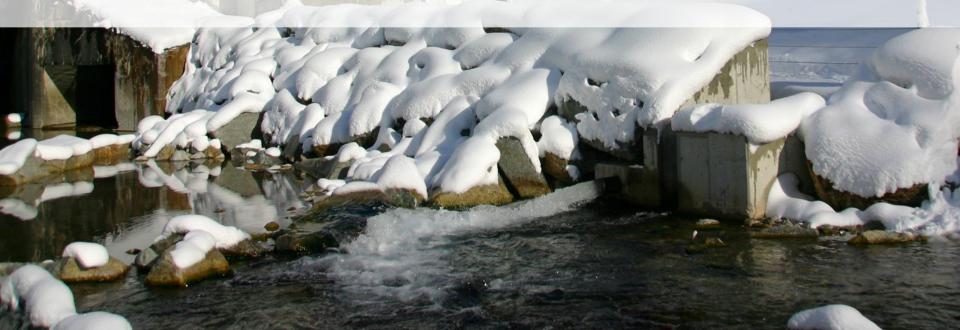
Instream Measures

Group of Boulders

Fish-Hotel

Special Formed Groyne

Root Stocks


Treetrunks Foto Dr. Markus Zeh

First Results

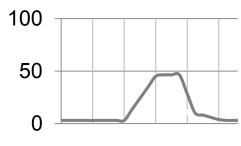
E-Fisching: Nov 2015 and Mar 2017 Significant Increase of Juvenile Fishes Indicator F4 from red → yellow/green

Fish Migration – Fish-Lift Gadmerwasser

4. Most Important Knowledge-Gaps

Hydropeaking

- Effects of Mitigation Measures
- Critical Values for Minimising Stranding of Fish
- \rightarrow 2017-2018 Experiments with wild fishes in the Hasliaare
- General Process-Understanding


Fishmigration

- Downstream Migration

Residual Flow

- Critical Waterdepth for Big Salmonids
- Other Parameters influencing the Movement of Big Salmonids
- → "Hope" in Horizon 2020 (KWO as a Case Study)

Contact steffen.schweizer@kwo.ch

Thank You for your Attention!

Foto Dr. D. Tonolla & Dr. M. Döring, eQcharta / ZhAW