Fishfriendly Innovative Technologies for Hydropower (FIThydro)

IEA Hydropower, Brussels, Belgium
29-30 May, 2017

Peter Rutschmann
Technical University Munich
Key Facts

- 26 partners (13 research, 13 industrial) in 10 European countries
- Total **Budget**: 7.2 Mio. Euro
- FIThydro addresses **decision support** in commissioning and operating hydropower plants (HPP) by use of existing and innovative **technologies**.
- The project investigates **mitigation** measures and strategies to develop cost-efficient environmental solutions for **sustainable** and **fish friendly** hydropower.
- **Case study regions**: France/Belgium, Portugal/Spain, Scandinavia and the Alpine Region.

Homepage: www.fithydro.eu
Objectives

1. Bringing together **all disciplines** related to hydropower.
2. Assessing the response and resilience of **fish populations** in HPP affected rivers.
3. **Environmental** impact assessment and species protection.
4. Improving fish and fisheries impact **mitigation strategies** using conventional and innovative **cost efficient** measures.
5. Enhancing methods models and tools to cope with EU obligation.
6. Identifying **bottlenecks of HPPs** and deriving cost efficient mitigation strategies.
7. Risk based Decision Support System (**DSS**) for planning, **commissioning and operating** of HPPs.

P. Rutschmann (TUM), *IEA Hydropower, Brussels, Belgium, 30 May 2017*
Management Structure

- **The Coordinator (CO)**
- **General Assembly (GA)**
- **Steering Committee (SC)**
- **The Case Studies Management Board (CSMB)** which is responsible for the management of the case studies.
- **The External Expert Advisory Board (EEAB)**
Work Packages

<table>
<thead>
<tr>
<th>WP Number</th>
<th>WP Title</th>
<th>Start month</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP1</td>
<td>Fish population development in HP effected environments</td>
<td>6 - FVB.IGB</td>
</tr>
<tr>
<td>WP2</td>
<td>The appraisal of existing solutions, models, tools and devices to assess (the) self-sustained fish population(s) at the test case HPP in each of the four regions</td>
<td>3 - CNRS</td>
</tr>
<tr>
<td>WP3</td>
<td>The innovation of solutions, models, tools and devices to assess self-sustained fish population(s) at the test case HPP in each of the four regions</td>
<td>2 – IST</td>
</tr>
<tr>
<td>WP4</td>
<td>Cost effective management strategies to improve the development of self-sustained fish populations at existing and new HPPs</td>
<td>8 - SER</td>
</tr>
<tr>
<td>WP5</td>
<td>Stakeholder involvement & decision- support system</td>
<td>11 - EI</td>
</tr>
<tr>
<td>WP6</td>
<td>Communication, Dissemination and Exploitation</td>
<td>1 - TUM</td>
</tr>
<tr>
<td>WP7</td>
<td>Management of the Project</td>
<td>1 - TUM</td>
</tr>
<tr>
<td>WP8</td>
<td>Ethics requirements</td>
<td>1 - TUM</td>
</tr>
</tbody>
</table>
Work Packages

- **WP1** Fish population development in HPP affected environments
- **WP2** Appraisal of SMTDs to assess self-sustained fish populations
- **WP3** Innovation of SMTDs to assess self-sustained fish populations
- **WP4** Cost effective management for self-sustained fish populations
- **WP5** Stakeholder involvement & DSS
- **WP6** Communication, dissemination and exploitation

P. Rutschmann (TUM), IEA Hydropower, Brussels, Belgium, 30 May 2017
Test Cases

<table>
<thead>
<tr>
<th>HPP</th>
<th>River / Country</th>
<th>HPP Data</th>
<th>Fish species / species at risk</th>
<th>Test case topics</th>
<th>Innovative SMTDs</th>
<th>Main Partners</th>
<th>Comments</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freudenau</td>
<td>Danube</td>
<td>Discharge [m³/s] 3000.0 Head [m] 8.6</td>
<td>Barbel, Nase</td>
<td>Fish migration</td>
<td>Habitat improvement</td>
<td>Methods</td>
<td>Operation and maintenance optimization, beaver management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operator Verbund</td>
<td>Austria</td>
<td>8.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Budget ca. 150000€</td>
<td>Capacity [MW] 172.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPP Ham</td>
<td>Albert canal</td>
<td>Discharge [m³/s] 15.0 Head [m] 10.0</td>
<td>Bream, Roach, Perch, Pike, Pikeperch</td>
<td>Fish migration Innov. Devices Turbine mortality</td>
<td>Species at risk Self sustained populations</td>
<td>Methods Tools</td>
<td>VLAGEW INBO SJE Innovarive Archimedes screw HPP</td>
<td>![Picture](HPP Ham.png)</td>
</tr>
<tr>
<td></td>
<td>Operator NV de Scheepvaart</td>
<td>Belgium</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Budget 65 000€</td>
<td>Capacity [MW] 1.2</td>
<td>Atlantic Salmon, Eel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gotein</td>
<td>Saison</td>
<td>Discharge [m³/s] 6.6 Head [m] 5.0</td>
<td>Brown Trout, Cyprinids, Salmon</td>
<td>Fish migration Attraction flows</td>
<td>Self sustained populations</td>
<td>Solutions Devices</td>
<td>CNRS VLAGEW INBO Test of bypass efficiency for salmon smolts. Low bar spacing (20mm) and low bar inclination (25%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operator provided by ONEMA</td>
<td>France</td>
<td>5.0</td>
<td>Salmon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Budget ca. 75 000€</td>
<td>Capacity [MW] 0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trois-Ville</td>
<td>Saison</td>
<td>Discharge [m³/s] 5.0 Head [m] 5.0</td>
<td>Brown Trout, Cyprinids, Salmon</td>
<td>Fish migration Attraction flows</td>
<td>Self sustained populations</td>
<td>Solutions Devices</td>
<td>CNRS VLAGEW INBO VOITH Test of bypass efficiency for salmon smolts. Low bar spacing (20mm) and low bar inclination (25%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operator provided by ONEMA</td>
<td>France</td>
<td>5.0</td>
<td>Salmon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Budget ca.80 000€</td>
<td>Capacity [MW] 0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Case Challenges

1. Flow and habitat
 – Lack of wetted area
 – Lack of or distribution of spawning habitat
 – Lack of or distribution of rearing habitat
 – Downstream or attraction flow
 – Environmental flow in bypassed reach
 – Hydropoeaking

2. Sediments
 – Deficit of sediments
 – Surplus of sediments
 – Clogging of substrate
Test Case Challenges

3. Upstream migration
 - Missing fish pass
 - High drop
 - Missing monitoring
 - Fish pass discharge
 - Missing fishway data
 - Fish entrance
 - Other

4. Downstream migration
 - Missing fish pass
 - Turbine passage
 - Too wide trash rack
 - Missing monitoring
 - Missing fishway data
 - Fish entrance
Test Case Challenges

Flow and habitat | Nature-like fishway | Upstream migration | Downstream migration

- Rearing habitat
- Downstream flow
- Attraction flow for UP
- Attraction flow for DOWN
- Environmental flow in bypassed reach
- Operational strategy
- Habitat in bypassed reach
- Hydropeaking
- Habitat
- Maintenance
- Missing fish pass
- Height drop
- Missing monitoring
- Fish pass discharge
- Missing fishway data
- Fish entrance
- Effect of cumulative dams
- Missing fish pass
- Turbine passage
- Too wide trash rack
- Missing monitoring
- Guidance device
- Fish entrance
- Maintenance
- Effect of cumulative dams

P. Rutschmann (TUM), IEA Hydropower, Brussels, Belgium, 30 May 2017
FIThydro and AMBER

AMBER:
Adaptive Management of Barriers in European Rivers

More effective ecosystem restoration in the EU

FIThydro:
Fishfriendly Innovative Technologies for Hydropower

Developing the next generation technologies of renewable electricity and heating/cooling
Cooperation: FIThydro and AMBER

Technical Cooperation:
- The EU barrier atlas on hydroelectric dams
- Effect of hydropower plants/barriers on the upstream and downstream reach
- Habitat Assessment (Telemetry, Drones)
Cooperation: FIThydro and AMBER

Project Management:
1. Regular communication through their PM’s
2. FIThydro and AMBER: Participation in meetings and workshops of the other projects
3. Aim to host a joint meeting in 2020 in Brussels
4. Cooperate to organize additional event. (e.g: WFM)
5. Cooperate to organize Conference sessions
Cooperation: FIThydro and AMBER

Dissemination:

1. Website visibility as “related Project”
2. Exchange user networks and subscribe to newsletters to maximize reach and impact.
Hydro Shaft Powerplant – Eco Friendly Hydro

Eco-friendly HPP with testing of fish behavior and bypass use and turbine mortality probabilities. The powerplant is not visible and not audible.
Hydro Shaft Powerplant – Eco Friendly Hydro

Eco-friendly HPP with testing of fish behavior and bypass use and turbine mortality probabilities. The powerplant is not visible and not audible.
Hydro Acoustic Fish Tracking Concept

- **Pros**
 - High range of sound waves in water
 - Mobile and flexible measurement setup
 - Contactless monitoring
 - Chance for continuous monitoring

Equipment
- Hydrophones (transmitter and receiver)
- Electric generator
- Amplifier (transmitter and receiver)
- Digital oscilloscope

Flexible Hydro Acoustic Measurement Concept
Fish Habitat and Population Modeling

Before flood

After flood

Suitable spawning area for graylings
Fish Habitat and Population Modeling

\[
[Ni^{t+1}] = [M] \times [Ni^t]
\]

Matrix M changes with time

Changes in time

Spawning

No spawning

Life cycles of a population

Preference curves

P. Rutschmann (TUM), IEA Hydropower, Brussels, Belgium, 30 May 2017
Fish Motion in the Flow

PhD thesis Dzung Nguyen (TUM)

P. Rutschmann (TUM), IEA Hydropower, Brussels, Belgium, 30 May 2017
Fish Habitat and Population Modeling - Colorado

- Brown trout (Salmo trutta)
- Rainbow trout (Oncorhynchus mykiss)
- Flannelmouth sucker (Catostomus latipinnis)

Graphs showing population trends for different species over time.

- Brown trout
- Rainbow trout
- Flannelmouth sucker

PhD thesis Yao Weiwei (TUM)
Slight off-peak mode operation of turbines (BAW)

PhD thesis S. Roenneberg (TUM)

P. Rutschmann (TUM), IEA Hydropower, Brussels, Belgium, 30 May 2017
Contact Information

Technical University Munich
Department of Civil, Geo and Environmental Engineering
Chair of Hydraulic and Water Resources Engineering
Arcisstr. 21
80333 München

Coordinator: Prof. Peter Rutschmann
Tel. +49 89 289 23161
Fax +49 89 289 23172
E-Mail peter.rutschmann@tum.de

Project manager: Hany Abo El Wafa
Tel. +49 89 289 23167
Fax +49 89 289 23172
E-Mail hany.wafa@tum.de

www.fithydro.eu
Please subscribe to FIThydro’s newsletter
Thank you

This project is Funded by the Horizon 2020 Framework Programme of the European Union Grant Agreement number 727830