

The implementation of the WFD in Norway

- Mitigating hydropower effects on fish stocks

Roy M. Langåker, Norwegian Environment Agency

Main pressures in Norway - from regional plans

NORWEGIAN ENVIRONMENT AGENCY

Main issues in Norway

Mitigation measures in process to reduce hydropower impacts by 2021-2033

- Political signals on hydropower and biodiversity from parliament (2016)
 - Increase revision of terms
 - Modernise legal possibilities for mitigation requirements
- Plans adopted by Ministry (July 2016)
 - 387 water bodies specified in decision
 - Flow measure in more than 50 rivers 2021-2033 (revision required)

Mitigating impacts from hydropower in priority water bodies by 2021-2033 (as a minimum)

River basin districs	Flow measures	Other measures	Total
Glomma/Västerhavet	35	33	68
Vest-Viken	35	56	91
Agder	17	8	25
Rogaland	2	1	3
Hordaland	10	13	23
Sogn/Fjordane	13	48	61
Møre/Romsdal	12	10	22
Trøndelag	8	10	18
Nordland	16	23	39
Troms	8	21	29
Finnmark	4	4	8
Norway	160	227	387

THE OF THE

Mitigating impacts from HydropowerFlow mesures to modernise environmental requirements

water bodies by 2021 - 2033				
	2021	2027	2033	
Catchment areas*	18	30	31	
Started by 2017	17	17	5	

ow monsures by revision of terms in priority

* May include many water bodies and 1 to 7 licenses

Authority: Norwegian Water Resources and Energy Directorate (NVE)

Mitigation measures and monitoring without impact on hydropower production

- Legal possibility for starting mitigation measures and monitoring in most licenses (pressure pays principle)
 - By standards for nature management conditions in licences for Hydropower developments

Salmon Rivers:

- 2017 mitigation and monitoring programs in 50 Rivers
- 2021 New mitigating programs in minimum 6 Rivers
 - Started by 2017
 - Diagnosis of impact, mitigation measures, monitoring

Authority: Norwegian Enviroment Agency

NORWEGIAN ENVIRONMENT AGENCY

Objective for fish stocks in Regulated Salmon Rivers: normal fishery without stocking

- Strategy: Restore as much as possible by
 - Habitat measures
 - in combination with environmental flow
 - two different management prosseses
 - Fish migrating measures up/down
- In Rivers without modern measures
 - the fish stocking will continue
 - until new measures give a fish population big enough to have a fishery
- When fish stocking is still needed
 - we try to use fish eggs

Habitat measures and Environmental Flow - tools

Handbook:

- ...how to explore, develop and implement measures
- that improves conditions for Atlantic salmon in regulated rivers
- in optimal trade-offs with hydropower production

	DATA COLLECTION AND TOOLS					
ijs Tools (DI-D7)	Mapping and survey of river types, substrate and shelter Mapping and survey of extent and spatial distribution of spawning area Relationship between wetted area and water flow Hydrological analysis Temperature data or modelling Collection of population data Description of hydropower system and regulation effects					
10	CLASSIFICATION SYSTEMS					
Diagr	The salmon population The hydropwer system					
	DIACNOSIS					
Part	Habitat bottlenecks • Shelter • Spawning areas • Flow - summer and winter flow - water level at spawning - smolt migration flow - 0 + habitat - river habitat consistency - habitat deterioration • Water temperature - 0 + growth - smolt age					
5	DESIGN SOLUTIONS AND MEASURES					
Design solutions Measures (methods) (T1-T	Habicat measures Water use • Shelter • Water semperature • cleaning of gravel banks • flootibe discharge systems • escablishment of shelter • discharge volumes in kay periods • restoration measures • discharge volumes in kay periods • "a river in the river" • Increased minimum flow • pawning habitat • - redistribution • installation of spawning gravel • water flow at spawning • subtiliation of spawning gravel • expansions					
1	ASSISTING TOOLS					
Dell	Building Block Method Water regatiations The Water Pool Impact assessments-water use Priority table					

Design solutions

Water use or habitat measures

- often in combinations

Case River Aurlandselva – Identify bottlenecks and mitigation measures

NORWEGIAN ENVIRONMENT AGENCY

Measures in River Aurlandselva

- 500 m2 of new spawning gravel

Before

Measures to improve habitat for juvenile fish

before

after

Connectivity - downstream migration

Last 10 years: bypass measures in 6 Rivers (without 100 % barrier - rack)

- Results: bypassing 50 - 80 % smolt of Salmon and Sea trout

New Hydropower licences - physical barrier (rack) and bypassing system

Case: River Tovdalselva

SafePass: ongoing reserch program

Fish: Safe up and down migration trough Hydropower developments

Design solutions and recommendation to:

the hydropower industry and the authorities

Hydro-peaking and impacts on fish - stranding

- Regulated Rivers in Norway
 - gentle peaking only allowed in most modern licenses (operational measure)
 - and volunteerily in many rivers (Statkraft).
- A New study on Hydro-peaking (published in 2016) shows that restrictions give results on fish stocks (salmonids)
 - developed a system for environmental adapted hydropeaking operations
- The knowledge gives the hydropower industry and the authorities a new tool:
 - identify impacts
 - how to mitigate

Water temperarture and supersaturation

- example on impacts we need more experience and testing

Typical hymo impacts	Alteration of physico-chemical conditions downstream of reservoir Deep water intake E.g. altered water temperature or quality in rivers
Typical ecological impacts	Altered composition or growth of biological quality elements Reduced survival/growth rate of fish in particular
Success criteria - mitigation	Mimicking more natural physico-chemical conditions Increased growth and survival of fish and macroinvertebrates More natural composition of biological quality elements

Mitigation for physico-chemical alteration

Multiple intakes at different heights in reservoir dam

100	Ĩ.	-	subs.
17		1	0.00
V C	-		2013

Installing flexible intake

Managing reservoir level

Mitigating oversaturation

Mitigation measure to reduce effect of low Temperature from environmental flow in summer

Case: River Eidfjordvassdraget Western Norway

Regulated by Statkraft

For 30 years:

Supersaturation - Causes

- Supersaturation (Total Gas Pressure TGP) happens when: Gas + liquid + pressure and reduction of pressure
 - Natural rivers usually 100 110% saturation
 - Sparkling water 120 130% saturation
- Biological effects: Fish: Gass bubble desease
 - In rivers fish will be killed at 110 140%
 - Effects on behaviour and immune system under 110%
- Hydropower induced:
 - Creek intakes, tight intake grids, areation at the outlet channel +

Supersaturation - monitoring and solutions

- Monitoring 9 Norwegian Rivers in the period from 2010 - 2015:
 - 7 with artificial Supersaturation
 - 4 with supersaturation dangerous for fish (110 - 170% TGP)
- Possible solutions
 - Reduced discharge at creek intakes, vacuum intakes, Grid cleaner, modification of spillways and channels, adjusted power operations

More info: ulrich.pulg@uni.no

Key message

- Approved regional plans and political signals to improve ecology in regulated Rivers
 - Mitigations measures including environmental flow in more than 50 rivers
- Good practise cases by use of environmental design like
 - Habitat measures (spawning grounds, young fish,)
 - Migrations measures (up/down)
- Need more development (+ cost/benefit) and research on measures like:
 - Altered temperature
 - Supersaturation

www.miljødirektoratet.no