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OVERVIEW OF THE IEA IMPLEMENTING AGREEMENT 

FOR HYDROPOWER TECHNOLOGIES AND 

PROGRAMMES 

 

The IEA Hydropower Implementing Agreement (IEA Hydro) is a working group of International 
Energy Agency   member countries and others that have a common interest in advancing 
hydropower worldwide. Member governments either participate themselves, or designate an 
organization in their country to represent them on the Executive Committee (ExCo) and on the 
Annexes, the task forces through which IEA Hydro’s work is carried out. Some activities are 
collaborative ventures between the IA and other hydropower organizations.  

Vision 

Through the facilitation of worldwide recognition of hydropower as a well-established and socially 
desirable energy technology, advance the development of new hydropower and the modernization of 
existing hydropower  

Mission 

To encourage through awareness, knowledge, and support the sustainable use of water resources for 
the development and management of hydropower. 

To accomplish its Mission, the Executive Committee has identified the following programme-based 
strategy to: 

• Apply an interdisciplinary approach to the research needed to encourage the public 
acceptance of hydropower as a feasible, socially desirable form of renewable energy. 

• Increase the current wealth of knowledge on a wide array of issues currently associated with 
hydropower. 

• Explore areas of common interest among international organizations in the continued use of 
hydropower as a socially desirable energy resource. 

• Bring a balanced view of hydropower as an environmentally desirable energy technology to 
the worldwide debate. 

• Encourage technology development. 

IEA Hydro is keen to promote its work programmes and to encourage increasing involvement of non-
participating countries. All OECD and non-OECD countries are eligible to join. Information about 
membership and research activities can be found on the IEA Hydro website www.ieahydro.org.  
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ABSTRACT 
 

The present state of knowledge regarding hydropower reservoir GHG emissions contains a large 
degree of uncertainty and many diverging positions. Recognizing this fact, the International Energy 
Agency Implementing Agreement for Hydropower Technologies and Programmes (IEA Hydro) 
started a new Annex on “Managing the Carbon Balance in Freshwater Reservoirs”, aiming through a 
comprehensive work program to increase knowledge on processes connected to man-made 
reservoir GHG emissions, establish best practice guidelines for planning studies on the carbon 
balance in reservoirs and standardize GHG flux evaluation methods.  

These guidelines provide a reference framework for performing quantitative analyses of net GHG 
emissions from man-made reservoirs, including advice and recommended procedures for 
performing in-situ measurements, data analysis and modeling. The guidelines have been prepared in 
two volumes: Volume 1- Measurement Programs and Data Analysis and Volume 2- Modeling (this 
document). Volume 2 comprises an executive summary, four chapters and an appendix.  

The first chapter gives an introduction and, overview while outlining the need, objectives and scope 
of this work. A roadmap is offered for use by the hydropower industry and acceptance by the 
broader community is outlined. The second chapter is devoted to screening the importance of 
emissions, covering the first-phase of the decision-making process, the development of a predictive 
screening tool to enable an understanding of the likelihood of high risk of net GHG emissions from 
reservoirs system. Importantly, for those reservoirs where high net GHG emissions are not expected, 
additional investigations, monitoring, and studies would not be necessary. The third chapter focuses 
on modeling activities, bringing the description of general recommended approaches for 
formulating, calibrating, validating and using models to obtain predictions of net GHG emissions 
from reservoirs. These cover reservoirs which a screening procedure has clearly shown that high net 
GHG emissions are expected, or where the risk is unknown or unclear. Chapter 4 on reporting Net 
GHG emission, covers the way to report the outcomes of the screening and any modeling process, 
through comprehensive documentation of the data inputs, methodologies and results. The appendix 
covers the invitation to users of the Guideline to submit examples of their work to the IEA Hydro 
website. This will provide a collection of ideas on how modelers have approached the determination 
of estimated GHG emissions and the challenges that may have been faced and overcome.   

While these Guidelines are written for hydropower reservoirs, or reservoirs that include hydropower 
as one of their multipurpose services, the processes that have been documented can, in general, be 
applied to any reservoir and can affect policy for both water and energy services 

Keywords: 
Carbon balance, Modeling, Net GHG Emissions, Multipurpose Reservoirs. 
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EXECUTIVE SUMMARY 
 

This state-of-the-art document, Guidelines for Quantitative Analysis of Net GHG Emissions from 

Reservoirs (Guidelines), defines procedures and best practices for the modeling of Greenhouse Gas 

(GHG) Emissions from Freshwater Reservoirs. It provides users with a reference framework for 

performing quantitative analysis of net GHG emissions and changes in carbon stock.  From this 

reference a sufficient analysis and study to understand the process of GHG emissions from an 

existing or planned reservoir can be completed.  

 

The Guidelines contain a set of suggested requirements for models and modeling approaches, 

sourced from the experience of engineers, scientists and academics, and experts from the 

hydropower industry.  This work also provides a roadmap for communicating the science of 

modeling outcomes in terms that are both appropriate for use by the hydropower industry and 

acceptable by the broader scientific and engineering community.   

 

One of the prime objectives of the Guidelines is to enable a “big picture” view in the selection of an 

appropriate GHG modeling approach for a reservoir or series of reservoirs. There are many types of 

man-made reservoirs globally, though only a small percentage have been developed for or include 

hydropower facilities. Hydropower reservoirs come in a wide variety of sizes, displaying orders of 

magnitude differences in surface area, depth, and age.  They can vary from huge bodies of water 

with multiple years of storage capacity to small head ponds for run-of-river projects.  Some 

reservoirs may exhibit high GHG emissions compared with those from the pre-inundation landscape 

area, particularly in their early years of operation.  Other hydropower reservoirs have been 

measured with emissions on par with natural reservoirs or even as a net carbon sink.  The Guidelines 

roadmap identifies the modeling approach relevant to each type of hydropower reservoir, clarifying 

that a blanket application of a single emission factor to all reservoirs is not correct as their 

characteristics can result in vastly different GHG emissions risk profiles. Importantly, for those 

reservoirs where the potential risk of net GHG emissions is shown to be low, additional 

investigations, monitoring, and studies may not be necessary. For this reason, the initial data 

screening approach employs a process to predict emissions that is straightforward but scientifically 

credible. 
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The present state of knowledge regarding hydropower reservoir GHG emissions contains a large 

degree of uncertainty and many diverging positions. To meet this challenge, the IEA Hydropower 

Implementing Agreement on Hydropower Technologies and Programs (IEA Hydro) initiated a new 

Annex on “Managing the Carbon Balance in Freshwater Reservoirs”. The objectives of the Annex, 

executed through a comprehensive work program, are to increase knowledge on processes 

associated with reservoir GHG emissions, establish best practice guidelines for planning studies on 

the carbon balance in reservoirs, and standardize GHG flux evaluation methods. 

 

These guidelines embody a best practice that will assist the reader in measurement, data analysis, 

and model development of net GHG emissions from hydropower reservoirs. Volume 1, completed in 

2012, addressed measurement programs and data analysis, whereas Volume 2 addresses the 

quantitative analysis of net GHG emissions from reservoirs through modeling.  

 

While these Guidelines are written for hydropower reservoirs, or reservoirs that include hydropower 

as one of their multipurpose services, the processes that have been documented can, in general, be 

applied to any reservoir and can affect policy for both water and energy services 
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1.0 INTRODUCTION TO GUIDELINES 

1.1 OVERVIEW1.1 OVERVIEW1.1 OVERVIEW1.1 OVERVIEW    
 

The present state of knowledge regarding hydropower reservoir GHG emissions contains a large 

degree of uncertainty and many diverging positions. Recognizing this fact, the International Energy 

Agency Implementing Agreement for Hydropower Technologies and Programmes (IEA Hydro) 

started a new Annex on “Managing the Carbon Balance in Freshwater Reservoirs”. The objectives of 

the Annex are to increase knowledge on processes connected to reservoir GHG emissions, establish 

best practice guidelines for planning studies on the carbon balance in reservoirs, and standardize 

GHG flux evaluation methods.  

The Guidelines provide best practices to assist the reader in performing measurements, analyzing 

data, and modeling net GHG emissions from multipurpose reservoirs.  They have been prepared in 

two volumes:  

Volume 1 – Measurement Programs and Data Analysis, contains advice and procedural 

recommendations for performing measurement campaigns and data analysis, and for obtaining 

estimates and quantifying uncertainties of net GHG emissions (IEA Hydro 2012). 

Volume 2 – Modeling, provides users with a reference framework for performing quantitative 

analysis and modeling of net GHG emissions and changes in carbon stock.  From this framework 

readers can undertake sufficient analysis and study to understand the process of GHG emissions 

from an existing or planned reservoir correspondent to long-term horizons.  

It should be noted that a general introduction to the subject of reservoir emissions is contained in 

Volume 1 of these Guidelines. It is further noted that, as GHG emissions from reservoirs is not 

limited to those supporting hydropower development, but cover the full range of services that a 

reservoir can provide, the following text will cover reservoirs in a generic sense.  

1.2 GUIDELINE OBJ1.2 GUIDELINE OBJ1.2 GUIDELINE OBJ1.2 GUIDELINE OBJECTIVES AND SCOPEECTIVES AND SCOPEECTIVES AND SCOPEECTIVES AND SCOPE    
 

The purpose of these Guidelines is the development of a state-of-the-art methodology for a 

quantitative estimation of net GHG emissions from man-made reservoirs. This will provide users 

with a reference framework for performing quantitative analysis of net GHG emissions, from which 
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they can undertake sufficient analysis and study to understand the process of greenhouse gas cycles 

at existing or planned reservoirs. The primary objectives are to: 

• Provide a reference framework for performing quantitative analysis of net GHG emissions 

from reservoirs, based on best practices; 

• Provide a roadmap to enable the selection of the appropriate GHG modeling process for 

each reservoir or series of reservoirs.  This holistic approach offers guidance from the data 

screening stage through project planning optimization, where potential impacts and 

outcomes of the modeling process are used to inform design modifications, operational 

strategies, or management practices for new or existing reservoir projects; 

• Guide the scientific community on modeling processes to address issues associated with 

reservoir GHG emissions; 

• Recommend a set of requirements that models and modeling approaches should follow in 

order to capture the relevant processes of GHG emissions with adequate accuracy; 

• Provide guidance to ensure modeling process outcomes are aligned with the requirements 

of the end user; 

• Facilitate communication of model outcomes in a way that ensures broad uptake and 

acceptance of the modeling processes. 

These objectives will be established and communicated through the application of these Guidelines 

to a set of hydropower reservoirs spread in boreal, tropical, semi-arid and temperate climate zones 

under the activities of the work program of IEA Hydropower Implementing Agreement Annex XII.  

The Guidelines objectives were created through a comprehensive and collaborative approach that 

incorporated: 
1. Literature Reviews of previous work on reservoir GHG emission modeling; 

2. Reviews of the extensive research  and modeling carried out in Brazil, as well as in Australia, 

Canada, China, Finland, France, Japan, Norway, the USA,  and through IHA/ UNESCO as appropriate; 

3. Workshops with Annex members and contributing parties in Rio de Janeiro, Brazil, Knoxville, USA 

Rovaniemi, Finland and London, UK, to discuss and draft the guidelines;  
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4. Identification of and communication with numerous scientists and academics with extensive 

subject knowledge and engineers well versed in industry practices  

5. The collected knowledge of the authors and other contributors; 

6 Peer review from an external group of experts.  

While these Guidelines are written for hydropower reservoirs, or reservoirs that include hydropower 
as one of their multipurpose services, the processes that have been documented can, in general, be 
applied to any reservoir and can affect policy for both water and energy services 

1.3 FORMAT AND USE OF GUIDE1.3 FORMAT AND USE OF GUIDE1.3 FORMAT AND USE OF GUIDE1.3 FORMAT AND USE OF GUIDE    
 

The framework for identifying best practices for performing modeling of net GHG emissions from 

reservoirs is set out in this volume, with a format as follows: 

Chapter 1: Introduction and Overview - explains the needs, concepts, objectives and scope of this 

volume.  In addition, a roadmap or pathway for use by the hydropower industry and acceptance by 

the broader community will be outlined. This chapter will provide the user with an understanding of 

what these Guidelines on modeling contains and where it will be applicable to the user's needs.  

Chapter 2: Screening for the Importance of Emissions– covers the first phase of the decision-making 

process, the development of a predictive screening tool to enable an understanding of the likelihood 

of a moderate to high risk of net GHG emissions or removals from a reservoir system. Importantly, 

for those reservoirs where the potential risk of net GHG emissions is shown to be low, additional 

investigations, monitoring, and studies may not be necessary.   

Chapter 3: Modeling of Net GHG Emissions and Removals from Reservoirs – covers the description of 

general recommended approaches for formulating, calibrating, validating and using models to 

obtain predictions of net GHG emissions from reservoirs. Modeling approaches are relevant when a 

reservoir screening procedure has clearly shown a potential risk of moderate to high net GHG 

emissions, or where the potential risk is unknown or unclear. 

Chapter 4: Net GHG Emission Reporting – covers the way to report the outcomes of the screening 

and modeling processes through comprehensive documentation of the data inputs, methodologies 

and results.  
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Appendix 1: Examples of Models Supporting the Net GHG Approach – covers the invitation to users 

of these Guidelines to submit examples of their work to the IEA Hydro website. This will provide a 

collection of ideas on how modelers have approached the determination of estimated GHG 

emissions and the challenges that may have been faced and overcome.  

1.4 ROADMAP FOR ASSESSING RESERVOIR NET GHG EMISSIONS1.4 ROADMAP FOR ASSESSING RESERVOIR NET GHG EMISSIONS1.4 ROADMAP FOR ASSESSING RESERVOIR NET GHG EMISSIONS1.4 ROADMAP FOR ASSESSING RESERVOIR NET GHG EMISSIONS        
 

These Guidelines can assist the user to efficiently and effectively identify best practices for modeling 

net GHG emissions from reservoirs. Furthermore, guidance is provided to enable a “big picture” view 

and help in the selection of the appropriate GHG modeling process for each reservoir or series of 

reservoirs. Some reservoirs may exhibit high GHG emissions compared with those from the pre-

inundation landscape area, particularly in their early years of operation. The roadmap process will 

identify the modeling approach that is relevant to each case. Some reservoirs will also have low or 

insignificant GHG emissions, and some may even be carbon/GHG sinks. For this reason, the modeling 

approach will start with a screening tool (see Chapter 2). The user should, therefore, consider the 

relevance of each section of these Guidelines to their particular circumstance and how the guidance 

applies to their project.  

While GHG emissions are seen as low or insignificant at a majority of man-made reservoir sites 

globally, the means of recognizing the projects where GHG emissions may actually play a significant 

role should be simple and based on credible science.  This includes the processes for data collection 

and an efficient means to distinguish risk factors (or the absence thereof). Such screening is possible, 

but can be costly using expert services site by site.  The intent is to be able to apply a commonly 

accepted “GHG screening procedure” that fulfills the required qualities in terms of both science and 

usability. 

The procedure for assessing the net GHG risk in a planned or existing reservoir is illustrated in Figure 

1.1. The method is relevant for both the planning of a new project and for assessing the unknown 

GHG balance of an existing reservoir. The goal of the GHG assessment path, as described in Figure 

1.1, is to provide adequate information for an Environmental Impact Assessment (EIA) or a similar 

administrative purpose (e.g. continuous licensing). The level of risk may be obtained either directly 

through a credible screening process, if no high GHG emissions are expected, or through a more 

comprehensive pathway, including comprehensive monitoring, measurement and modeling 
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activities. Ideally, the screening process allows for modification of plans or management of the 

reservoir, and adaptations for changed conditions.  

Since the net GHG impact assessment follows the IEA/Hydro Guidelines Vol. 1 (IEA/Hydro 2012), 

collection of certain information is essential. The net GHG emission calculation is determined using 

GHG balances under pre-impoundment and post-impoundment conditions and the estimated 

impact of unrelated anthropogenic sources (UAS). The latter is actually a part of the post-

impoundment, but as noted by the IPCC (SRREN, 2011), the impact of UAS on reservoir GHG 

emissions should be eliminated. Chapter 3.4 gives guidance on modeling of the UAS impact. 

The information required for estimating UAS can be obtained either in the case of planning a new 

reservoir project or managing an existing one. Most of the information required concerns the land 

cover, land use activities, population, and industry in the watershed. In the former case the land 

cover and land use of upstream watershed areas can be determined using modern remote sensing 

techniques. This would cover the upstream watershed, land cover of the inundation area prior to the 

impoundment, and human activities that may cause release of nutrients and organic matter to the 

watercourses from the upstream catchment. In the latter case such information would likely have 

been obtained for technical planning reasons.  

The GHG assessment procedure, or roadmap to decisions thereupon, is described in more detail in 

Figure 1.1 with numbers referring to respective points in the text. 
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Figure 1.1. A general description of the course of actions in preparing a net GHG emission assessment 
for EIA or similar purpose. (Numbers in boxes refer to respective points of explanation in text).

1. Collect information for the screening process and the GHG impact assessment

a. Catchment features

those charging the reservoir with nutrients and organic matter, including land cover 

(forests, grasslands/shrublands, wetlands, open areas etc.), land use (croplands, 

pastures, settlements, built

nutrients or organic matter

related information should be well known either in the planning process or for an 

existing reservoir. 

b. Pre-inundation area features

soil types in the area to be inundated, or the area that was inundated when the 
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or similar purpose. (Numbers in boxes refer to respective points of explanation in text).
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Catchment features. The factors that have an impact on reservoir GHG balance are 
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related information should be well known either in the planning process or for an 
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reservoir was dammed, should be determined or recovered from historical 

documents including maps, or old aerial or satellite images. In absence of such data, 

land cover and land use that very likely occupied the area should be applied. When 

characterizing the future reservoir, properties such as mean depth, residence time 

and shape should be estimated. 

c. Sewage loads from human activities in the watershed. Diffuse and point source 

sewage load from population and industry that affect the watercourse nutrient 

should be estimated.  

2. Apply the information to a screening process (see Chapter 2 of this document) 

a. Use an appropriate threshold or performance criteria for the determination of high 

net GHG emission. 

b. If the screening process clearly indicates a minimal risk for high net GHG emission 

from the new project or an existing reservoir, proceed to use the information 

collected in 1a, b, c, and the results obtained from the screening process (2), in 

preparation of an EIA or a similar document and possibly also for planning a 

monitoring program of GHG emissions and/or WQ (3).  

c. If the screening process indicates a risk for high net GHG emissions to occur, go to 

(4).   

3. Confirm the screening results 

Prepare EIA and monitoring protocols as required. The IEA Hydro Guidelines Volume 

1 provides a description of net GHG emission assessment. Use that and the 

information collected for a new project, the results from the screening process, 

possibly the measured data and model runs, and the framework set by legal bodies, 

to formulate an appropriate assessment of net GHG emissions. Chapter 4 of this 

Volume gives guidance on transparent reporting. 

4. Evaluate the new project or existing reservoir in terms of GHG emissions 

Use the screening results to make decision on whether the net GHG emission risk is 

high enough to merit modifications to the planning process or reservoir operation. If 

these modifications are effective, run the screening process again with updated data 

(5). If eligible modifications are not available, including withdrawal from the project, 
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proceed to formulate a GHG measurement and modeling program, commensurate 

with the expected GHG emissions (6). 

5. Modify plans of new or management practices for new or existing reservoirs 

Provide data describing the modified conditions in the features of the catchment, 

inundation area, and human activities. This can also include modifications to the 

design and operation of project features. Run the screening process again (2). 

6. Measure and model the GHG fluxes 

a. The IEA Hydro Guidelines Volume 1 provides guidance for the development of a 

comprehensive measurement program that supports the net GHG calculation 

procedure, and the IHA Manual (IHA 2009) provides comprehensive details on GHG 

measurement techniques and processes. 

b. The IEA Hydro Guidelines Volume 2 provides guidance for the development of new, 

or modifications to existing hydrodynamics and biogeochemistry models, for use in 

the prediction of net GHG emissions from planned or existing reservoirs. 

7. Apply the net GHG emission assessment results for new and existing reservoirs 

a. Report the results of the comprehensive GHG measurement program for the 

preparation of an EIA or for similar purposes (3).  

b. Use the measured data in 1D, 2D or 3D models, as described in the present 

document. Report the results of GHG model run for the preparation of EIA or for 

similar purposes (3).  

1.5 DEFINITIONS AND ASSUMPTIONS1.5 DEFINITIONS AND ASSUMPTIONS1.5 DEFINITIONS AND ASSUMPTIONS1.5 DEFINITIONS AND ASSUMPTIONS    
 

Term Definition Explanation and Assumptions 

Application of 

modeling 

All reservoirs, existing, under 

construction and planned 

The application covers all reservoirs, including, 

but not limited to, hydropower. 

Flux Flow of matter, e.g. a GHG 

species, passing a boundary 

such as from water to the 

atmosphere, per unit time and 

area. 

Called efflux or influx depending on the 

direction of flux. The flux rate may vary daily 

or seasonally. Relevant unit times from 

seconds to years in association with processes 

of interest. 

Gas types under CO2, CH4, N2O Volume 1 of this Guideline determines the 
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consideration relevant GHG’s for net emissions and 

removals calculation. 

Gross emissions Total GHG emissions from a 

reservoir. 

These emissions are measured, calculated or 

postulated from conditions in the reservoir, 

also referred to as post-impoundment 

emissions.  

Hydropower  A renewable source of power 

derived from the energy of 

falling water 

Hydropower can be classified as Run-of-river, 

Storage hydropower and Pumped storage.  

Modeling 

output 

Net GHG emissions expressed 

as CO2eq g/m2/year. 

This is considered the most useful way of 

comparisons between reservoirs and against 

threshold/performance criteria. 

Net emissions Modification of GHG emissions 

due to the creation of the 

reservoir 

 

The contribution of GHG that a reservoir 

makes to the environment, being the 

difference between post-impoundment 

balances of gross GHG emissions and carbon 

removals, excluding the gross GHG emissions 

from UAS, and pre-impoundment balances of 

gross GHG emissions and carbon removals. 

Pre-

impoundment 

emissions 

GHG emissions prior to the 

creation of the reservoir. 

These emissions are measured, calculated or 

postulated from conditions in the natural pre-

inundated river basin. 

Reservoir  A natural or  artificial man-

made lake, storage pond, or 

impoundment from behind 

a dam which is used to store 

or divert water 

Reservoirs may use their storage and diversion 

capacity and capability to  provide multiple 

services (multi-purpose reservoirs)  
Spatial 

Coverage 

The reservoir footprint, the 

upstream catchment and the 

river downstream that is 

influenced. 

The screening process will cover just the 

reservoir footprint. 

Stock Storage of matter within a Carbon stock in sediment or forest trees and 
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body of interest, e.g. 

sediment, mass per volume. 

soil may be important for fluxes after 

impoundment- 

Time frame for 

GHG fluxes and 

changes in 

Carbon budget 

100 years, with the 

assumption of no change in 

natural and anthropogenic 

impacts. 

 

This assumption is not likely in reality, but 

allows for a comparison considered suitable 

for the pre- and post-impoundment situation 

as well as with and without UAS. 

 

Unrelated 

Anthropogenic 

Source (UAS) 

GHG emissions due to inflow 

of nutrients and carbon from 

sources unrelated to the 

reservoir, e.g. sewage, 

agricultural run-off, forestry 

waste etc. 

It is important to distinguish between natural 

background and anthropogenic emissions. 
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2.0 SCREENING FOR THE IMPORTANCE OF EMISSIONS  
 

2.1 INTRODUCTION  2.1 INTRODUCTION  2.1 INTRODUCTION  2.1 INTRODUCTION      
 

There are many types of reservoirs globally, though only a small percentage have been developed 

for or include hydropower facilities. Hydropower reservoirs come in a wide variety of sizes and can 

vary from huge bodies of water with multiple years of storage capacity to small head ponds for small 

run-of-river projects. Each can also have very different geomorphological features in terms of shape 

and depth. The reservoir shoreline and inundated areas can range from solid bedrock through 

original forest to swamp and the catchment area can have varied uses, some with significant existing 

development and others which will be radically affected by the building of the reservoir.  

Reservoirs pose a potential risk in terms of net GHG emissions, but there is an extremely wide range 

of conditions that can affect this potential. In addition to the physical parameters, there is also the 

influence of extreme events such as floods which, if significant, can carry large amounts of sediment 

and organic debris into the reservoir. Emissions can also be variable in different climatic zones, 

different parts of the reservoir, and in different seasons of the year.  Emissions can also be affected 

by UAS such as agricultural waste, industrial effluent and sewage. 

Importantly, for those reservoirs where the potential risk of net GHG emissions can be shown to be 

low, additional investigations, monitoring, and studies would not be considered necessary. For this 

reason, the approach to predicting emissions starts with data screening using a process that is 

simple but scientifically credible. 

It is extremely important that any screening process includes an understanding of the variables in 

each particular situation and its inherent limitations (including the use of screening tools). Screening 

should be based on an assessment of all important variable parameters and on good engineering 

and scientific judgment.  

2.2 SCREENING PROCESS AND CRITERIA2.2 SCREENING PROCESS AND CRITERIA2.2 SCREENING PROCESS AND CRITERIA2.2 SCREENING PROCESS AND CRITERIA    
 

Context 

All reservoirs pose some risk of GHG emissions, though in many cases, e.g. projects with a low 

retention time, this risk is considered to be low to extremely low.  Where there is a requirement or 
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desire to evaluate a project in terms of its net GHG emission risk, it is prudent to separate out those 

projects which do not have a high risk.). Importantly, for those reservoirs where the risk of net GHG 

emissions can be shown to be low, additional investigations, monitoring, and studies would not be 

considered necessary. 

For this reason, the use of a screening process can be very useful in providing an appropriate 

approach for the determination of those projects not having high risk exposure for net GHG 

emissions. The decision-making process is shown in Figure 1.1. The fundamental requirement of a 

screening process is to enable decision-making on the likelihood of a high risk of net GHG emissions 

from a reservoir system. This in itself will provide regulatory agencies, financing groups and 

developers with confidence on the way forward and will help guide sustainability practices.   

Best Practice Guidelines: 

A. The screening of reservoirs should determine the risk of net GHG emissions  
B. Screening of reservoirs should be based on a risk assessment process. 
C. The screening process should be appropriate for assessment of both existing reservoirs and 

the development of new schemes.   
D. Screening outcomes should include criteria to classify net GHG emission risk levels. 
E. Where the screening of a reservoir indicates a high risk of net GHG emissions, further 

evaluation and analysis should be undertaken.  
F. The screening process should be acceptable to reservoir owners, regulators and 

stakeholders.  

Commentary  

A. The screening of reservoirs should determine the risk of net GHG emissions  

The primary purpose of screening is to determine the risk of GHG emissions and whether the level of 

risk warrants more detailed investigation and analysis. Other purposes include: 

• The need to better understand the net balance of GHG emissions.  

• An appraisal of the level of emissions from new and existing reservoirs, as an initial step. 

• The ability to undertake a rapid assessment of the GHG emissions from reservoirs 

• For multipurpose dams, providing a balanced way of allocating net emissions from the 

reservoir system to the range of energy and water services that the reservoir provides. 
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B. Screening of reservoirs should be based on a risk assessment process. 

The screening process should be based on a risk assessment approach. This will include the pre-

conditions that signal environmental issues which could lead to moderate to high GHG emissions, 

and the methodologies that would lead to their determination. It should also highlight and identify 

factors which may increases GHG risks for reservoirs.  This process will enable assessments to be 

made against criteria of moderate/high or low potential of GHG emissions. 

Screening methodology should be developed that meets the requirements of the screening process, 

based on a risk assessment process. The risk criteria for this development and use should include: 

• A simple methodology for determining net emissions of GHG associated with a reservoir 

system based on parameters that do not require fieldwork. 

• Simple and easy to use processes, requiring low levels of onsite measurement of potential 

contributory factors. 

• Robust and independently verifiable results for reservoirs across all geographic regions. 

• A net result consisting of an assessment of post-impoundment minus pre-impoundment 

emissions minus an estimate of UAS. 

• Datasets of catchment and reservoir properties. 

• A threshold or performance criteria for GHG emission risk. 

• Identification of reservoir systems which are at risk of high GHG emissions and will therefore 

require further detailed modeling, monitoring or mitigation.  

Net GHG emissions cannot be observed or measured directly, they need to be estimated using a risk 

based approach as the basis of the screening process and include the following components:  

• Pre-impoundment emissions - based on the source of emissions from the reservoir basin 

before the reservoir was in place and including consideration of the land-use patterns, 

existing water bodies and other relevant activities. 

• Post-impoundment emissions - based on the emissions due to reservoir impoundment, 

which may be referred to as ‘gross emissions’ and cover the reservoir and downstream 

reaches. 

• Unrelated anthropogenic sources - based on the component of the overall emissions caused 

by processes beyond the control of the reservoir/basin, including activities which increase 

the nutrient loading of the upstream water course and hence reservoir emissions. 
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Consideration should also be given to the allocation or apportionment of the net emissions from the 

reservoir systems to the energy and water services that the reservoir supplies. These services could 

include hydropower, irrigation, flood control, water supply, navigation, recreation, etc.  

C. The screening process should be appropriate for both assessment of existing reservoirs and the 
development of new hydropower or multi-purpose schemes.   

The screening process needs to be flexible enough to enable decisions on the likelihood of a 

potential risk of net GHG emissions from either an existing reservoir system or a proposed 

development of a new reservoir system. This will provide regulatory agencies, financing groups and 

developers with confidence on the way forward. For existing schemes, this is especially pertinent at 

the time of hydropower re-licensing, and for the development of new schemes, will allow 

appropriate design input.   

The screening process should also cover reservoirs that provide multipurpose services.  The process 

is shown on Figure 1.1.  

D. Screening outcomes should include criteria to classify net GHG emission risk levels 

The screening process should provide clear guidance in terms of the net GHG emissions risk levels, 

based on classification criteria. These criteria should be based on units of CO2eq g/m2/year and 

CO2eq tons/year from the inundated area.  

The screening process and criteria should be developed to a level of confidence sufficient to enable 

decision-making in terms of separating between two categories: 

1. Projects that clearly have minimal risk for high net GHG emissions, and 

2. Projects where there is a risk of high net GHG emissions, or where the risk is unknown or 

unclear. 

For Projects in Category 2, and where eligible modifications to the reservoir design or operation are 

not feasible, including withdrawal from the project, a program of further study should be initiated. 

This could include the formulation of a GHG measurement, monitoring and modeling program, 

commensurate with the expected net GHG emissions. This is covered in Chapter 3 of these 

Guidelines. 
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E. Where the screening of a reservoir indicates a high risk of net GHG emissions, further evaluation 

and analysis should be undertaken  

The outcome of the screening process will be sub-divided into three categories:  

1. Reservoirs that clearly have minimal risk for high net GHG emissions. These reservoirs will 

not require any further analysis for GHG emissions. 

2. Reservoirs that clearly have a risk of high net GHG emissions. This category will cover 

projects where high risk of net GHG emissions has been already confirmed or is strongly 

anticipated.  For these reservoirs, a comprehensive research program with data collection 

and monitoring should be established, followed by modeling of hydrodynamics and 

biogeochemistry of the reservoir. The screening process should also identify, wherever 

possible, the conditions and characteristics that lead to high risks. 

3. Reservoirs where the potential risk is unknown or unclear. This category will cover projects 

with insufficient data to run the screening process. In these cases a limited program of data 

collection will be required in order to determine the risk level. 

The screening process is indicated in Figure 1.1. The scale of the research program will depend on 

the following parameters: 

• The net GHG emissions estimated and risk factors indicated by the screening process; 

• The size and complexity of the reservoir, including bathymetry and shoreline morphology; 

• The expected influence of floods and extreme events; 

• Water quality focusing on concentrations of nutrients and organic matter in reservoir 

inflows (these parameters can fuel the anoxic methane engine); and 

• Comparison with data sets for other reservoirs in the region. 

The data thus obtained will be used as input to models implemented to address the hydrodynamics 

and biogeochemistry of the reservoir. To ensure consistency and transparency in the functionality of 

the screening process, the basis and methodology of its use should be contained in an easily 

accessible and readable User Manual. This manual should be comprehensive, transparent in terms of 

source of information, unambiguous, structured and adapted for targeted end-users. 

F. The screening process should be acceptable to reservoir owners, regulators and stakeholders  
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The screening process should be based on the risk potential of net GHG emissions and provide a 

straightforward approach for estimating the risk of net GHG emissions from a reservoir system. This 

will allow the identification of reservoir systems which are at risk of high net GHG emissions that will 

require further detailed measurements, study, modeling, monitoring and mitigation. By using the 

latest research and data available, it should be possible to improve the quality of data when 

updating the screening process and incorporating relevant variables. 
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3.0 MODELING OF NET GHG EMISSIONS AND REMOVALS FROM RESERVOIRS  

3.1 C3.1 C3.1 C3.1 CONCONCONCONCEPTIONS FOR EPTIONS FOR EPTIONS FOR EPTIONS FOR GHG GHG GHG GHG MODELINGMODELINGMODELINGMODELING        

3.1.1 Introduction3.1.1 Introduction3.1.1 Introduction3.1.1 Introduction    

Reservoirs planned for the development of water resources in a river basin are not built at the same 

time. Anytime a reservoir is built and filled, part of the valley terrain environment is replaced by an 

inundated area, and a new regime of GHG fluxes is established, including those between the 

reservoir surface and the atmosphere and those due to permanent carbon burial rates. The new 

regime can include: the diffusive and ebullitive GHG fluxes across the new air-water interface 

corresponding to the reservoir area; the new regime of permanent carbon burial rate established at 

the reservoir sedimentation zone; the GHG emissions from water discharged downstream through 

outflows structures due to abrupt changes in the hydrostatic pressure (“degassing”);  and the 

modified GHG fluxes across the air-water interface in the downstream reach due to changes in 

concentrations of dissolved gases in the downstream water releases.  

The new GHG emissions and permanent sedimentation rates regime which appears after the filling 

of a specific reservoir is influenced by the decomposition of flooded biomass and organic matter 

stored at the inundated area at the time of the reservoir filling and this influence persist until the 

decomposition of this material is still significant. The new regime will also depend on process 

occurring in the reservoir upstream watershed. In the upstream watershed, carbon- and nitrogen- 

containing compounds collected by the drainage network are conveyed through the river system to 

the new reservoir where microbial activity eventually converts them to GHG. In general, any 

upstream anthropogenic activity which contributes to the concentrations of carbon- and nitrogen- 

containing compounds in reservoir inflows will determine GHG emissions to a certain extent1. 

In order to improve predictive capability on the changes in GHG fluxes and in permanent 

sedimentation rates induced by reservoir construction inside river basins, the complexity of physical, 

chemical and biological processes before and after the impoundments are represented in simpler 

manners by models where only relevant phenomenon features and processes are included. This 

chapter covers the description of general recommended approaches for formulating, calibrating, 

validating and using models to obtain predictions of net GHG emissions from reservoirs. 

                                                             

1 Upstream anthropogenic activities not related to the reservoir which induces GHG emissions at the reservoir 
has been defined in Volume 1 as Unrelated Anthropogenic Sources. 
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3.1.2 General Procedures for Modeling3.1.2 General Procedures for Modeling3.1.2 General Procedures for Modeling3.1.2 General Procedures for Modeling    

 

Context 

Modeling is not a straightforward activity. The approach to be adopted in any situation will depend 

strongly on the objectives of the analysis and available data, among other factors. On the other 

hand, there are general procedures that should be adopted when choosing the most appropriate 

modeling approach for assessing the GHG status of man-made reservoirs. 

Best Practice Guidelines: 

A. The adopted modeling approach should be appropriate to the type of analysis. 

B. Predictions of post-impoundment emissions can be obtained with simulations of mechanistic 
models whereas predictions of pre-impoundment emissions can be obtained using emission 
factors. 

Commentary  

A. The adopted modeling approach should be appropriate to the type of analysis. 

Building reservoirs in a river basin introduces a new regime of transformations, transport and 

storage of chemical species, including carbon- and nitrogen-containing compounds, at the different 

portions of the valley from that prevailing before the impoundments. These modifications yield a 

new regime of GHG fluxes between surface and atmosphere and of permanent carbon burial rates 

all over the basin. In the pre-impoundment period, before reservoirs existed in the river basin, 

upland vegetation comprised a net CO2 sink or source, depending on the stage of vegetation 

succession. The surface soil/peat layer cover could temporally and spatially make them net CO2 

sinks; the flood plains acting as sources of CH4 with permanent carbon burial. In the lakes, 

substantial permanent carbon burial could occur. The river reaches and streams, transporting water 

and sediments, were constantly producing GHG’s as a result of microbial community activity.  

Reservoir managers may already use hydrodynamics models that are adapted to their specific 

conditions and technologies. In addition to water management procedures, some of those models 

may address most important water quality measures such as oxygen saturation and nutrient 

concentration in the water body. On the other hand, some very simple models cannot be coupled to 

modules simulating biogeochemical processes. 
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For detecting a situation with potential for high GHG emissions, even the simplest correlation 

models should be able to indicate at least emergence of hypoxic conditions in the reservoir. 

Methane is considered as the most important GHG species emitted from reservoirs and is formed 

under strictly anoxic conditions (e.g. Bastviken 2009). There may be a positive relationship between 

methane emission and total P or N concentration in water (Huttunen et al. 2003). Similarly, DOC 

content and super-saturation of CO2 in water and net CO2 emission (net heterotrophy) may be 

related (Huttunen et al. 2002, Kortelainen et al. 2006). Long retention time in certain parts of the 

reservoir may be associated to development of local oxygen deficiency and potential CH4 release. 

A zero or one-dimensional model of key biogeochemical processes leading to significant GHG 

emissions can be useful as a primary screening tool. Such a model can be run with varying sets of 

parameters in order to identify the sets of conditions when oxygen deficiency may appear and 

launch GHG emissions. A screening model may also be based on a priori collected database of 

observed GHG fluxes, environmental conditions, geographical location, and other relevant 

properties of reservoirs. A 2D model can be configured to follow either for depth – longitudinal 

(2DV) approach, or lateral – longitudinal (2DH) approach.  

The observed or expected stratification of the reservoir may encompass the selection of the 

approach. Reservoirs with thermal stratification may require 2DV models. Models of different 

complexity can be used to solve different tasks. While simple deterministic models work in static 

conditions, increasing dimensionality adds model´s capability to adapt to varying conditions. 

Although modern technologies allow for running complicated 3D models such as general circulation 

models, e.g. those used in weather and climate predictions, models should be selected according to 

the scale of the problem to be solved. Basic reservoir GHG emission modeling may not need the 

most complex models.  

More complex models may detect developing eutrophication. Oxygen can be consumed via chemical 

and biological pathways. Some chemical conditions such as the presence of sulfate as an alternative 

electron acceptor may suppress methanogenesis (see Thauer 2011). Eutrophication may lead to 

increased occurrence of hypoxia and CH4 emissions (Huttunen et al. 2003, Juutinen et al. 2009, 

Martinez and Anderson 2013). However, H2S and CH4 have been observed to co-exist in anoxic 

bottom waters of reservoirs (Ruane 1993). Maintenance of eutrophic conditions initially requires 

that both organic carbon and nutrients are available in excess. Ultimately when eutrophication 

proceeds beyond a certain point, an internal nutrient cycle may be established (e.g. Numburg and 
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Peters 1984, Correll 1998). In those conditions, active heterotrophic consumption of oxygen leads to 

hypoxia, and the phosphorus sedimented in dead organic matter dissolves under anoxia and gets 

released as PO4. Consequently, algal blooms may occur (Smith 2003) leading ultimately to further 

sedimentation of organic matter and oxygen deficiency (Anderson & Garrison 1997).  

B. Predictions of post-impoundment emissions can be obtained with simulations of mechanistic 

models whereas predictions of pre-impoundment emissions can be obtained using emission 

factors. 

Applications of mathematical mechanistic models can provide reliable predictions of post-

impoundment fluxes if proper modeling procedures are adopted. General model building 

procedures are given in the following items of this chapter; whereas Chapter 3.3 provides more 

detailed guidance on recommended procedures for this type of models. 

While there are some reported experiences on extending mechanistic hydrodynamic/water quality 

models with process to simulate exchanges of GHG with the atmosphere, no attempt has been 

reported of including landscape-atmosphere GHG exchanges in existent state-of-art physically-based 

watershed simulation models. The standard procedure for obtaining estimations of post-

impoundment emissions is to use indirect estimations based on mapping the use of the soil before 

impoundment and the appliance of emission factors. Chapter 3.3 provides detailed guidance on 

recommended procedures for obtaining post-impoundment emissions estimations. 

3.1.3 Conceptual Model for Net GHG Emissions and Removals3.1.3 Conceptual Model for Net GHG Emissions and Removals3.1.3 Conceptual Model for Net GHG Emissions and Removals3.1.3 Conceptual Model for Net GHG Emissions and Removals    

 

Context 

Volume 1 of these guidelines has defined net GHG emissions for man-made reservoirs as 

“differences between post-impoundment balances of GHG emissions and removals, excluding GHG 

emissions from unrelated anthropogenic sources, and pre-impoundment balances of GHG emissions 

and removals”.  In order to make quantitative analysis considering this definition, a conceptual 

model of a reservoir has been developed which is a starting point for building models to predict 

reservoir GHG status. 

Best Practice Guidelines: 
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A. The conceptual “net” model should be used as the basis for building models to aid in man-made 

reservoir GHG status assessments. 

Commentary  

A. The conceptual “net” model should be used as the basis for building models to aid in man-made 

reservoir GHG status assessments. 

The conceptual model presented in Volume 1 focuses on the modifications occurring in the reservoir 

area and its vicinity2 by taking into account the following GHG flux pathways both before reservoir 

construction and during reservoir operation: 

• GHG emissions and removals occurring in the reservoir area; 

• Simulate the role of chemicals involved in the process; 

• Permanent carbon burial rate occurring in the reservoir area; 

• Degassing during the passage of water through outlets3; and 

• GHG emissions in the river downstream of the dam (tail-water) for some considerable 

distance. 

In general, Volume 1 lists fluxes of CO2, CH4 or N2O between surface and atmosphere and permanent 

carbon burial rates occurring in different components of the system (see Figures 1 to 3 in Volume 1). 

These fluxes and rates were assembled as parcels in equations to assist obtaining reservoir net GHG 

emissions estimates. The set of equations represents the balance of GHG emissions and removals. 

The equations cover both pre-impoundment and post-impoundment conditions, including the post-

impoundment emissions attributed to anthropogenic sources unrelated with the reservoir, which 

should be discounted. Modeling efforts should consider the parcels of the equations in Volume 1. 

3.1.4 Prediction Uncertainty Analysis3.1.4 Prediction Uncertainty Analysis3.1.4 Prediction Uncertainty Analysis3.1.4 Prediction Uncertainty Analysis    

Context 

                                                             

2 The concept model can be extended to assess also modifications inside broader areas in the whole river basin 
which can be appropriated for assessing GHG status of sets of cascaded reservoirs. 

3 Degassing only occurs during reservoir operation. 
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Models can be built to provide long-run values of GHG fluxes between surface and atmosphere and 

permanent carbon burial rates in a valley considering the situations with and without a reservoir so 

that predictions of the reservoir net GHG emissions can be obtained. Uncertainty inherited in most 

model´s prediction efforts derives from unpredictable natural forcing functions (e.g., wind, rain, 

temperature) to which the system will be submitted over the long term. It also includes assumptions 

and approximations adopted for the mathematical description of physical and biogeochemical 

processes involved, parameter setting uncertainties, imprecise boundary conditions descriptions and 

numerical errors in the solution algorithm. Moreover, prediction uncertainty analysis is also fruitful 

during the model development stage in identifying key factors most influential for model predictions 

and of the associated efforts that should be made to pursue accurate predictions. Prediction 

uncertainty analysis should include its communication.  

Best Practice Guidelines: 

A. Modeling studies for prediction of GHG emissions of multipurpose reservoirs should also include 

an analysis of the prediction uncertainties. 

B. Reports of modeling predictions of GHG emissions of multipurpose reservoir should include two-

sided 95% confidence interval.  

C. Uncertainties associated with the predictions of net emissions resulting from the application of 

the models must take into account the uncertainties in the predictions of post-impoundment and 

of pre-impoundment emissions. 

Commentary  

A. Modeling studies for prediction of GHG emissions of multipurpose reservoirs should also include 

an analysis of the prediction uncertainties. 

Results obtained through the application of predictive models exhibit varying degrees of uncertainty. 

Part of the uncertainty reflects the imprecision of data used in model calibration/validation, as well 

as the validity of model assumptions and simplifications, especially beyond the conditions on which 

the model was calibrated and validated. Even if calibration/validation data fulfill precision 

requirements and include a broad range of conditions, uncertainty in model predictions may come 

from random terms explicitly included in the model to represent non-modeled factors, as it is the 

case in empirical regression models. In mathematical mechanistic model applications, uncertainty is 
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also present in the natural forcing functions (ex: inflows and wind) used as input data when 

calibrating models for the prediction period. These natural forcing functions usually contain 

substantial amount of randomness, inducing uncertainty in model outputs. To have a proper 

assessments of the status of GHG emissions from multipurpose reservoirs, modeling studies should 

include an analysis of the prediction uncertainties (Beck, 1987). 

B. Reports of modeling predictions of GHG emissions of multipurpose reservoir should include two-

sided 95% confidence interval. 

Predicted values of GHG emissions of multipurpose reservoirs are better appraised if their report is 

done together with a measure of its uncertainty. The best practice is to add to each individual 

prediction a two-sided confidence interval, bracketing the predicted value between a lower bound 

and an upper bound range among which the true GHG emission is likely to lie with great confidence. 

The choice of the confidence interval should reflect a high likelihood that the true GHG emission will 

indeed lie between the upper and lower bounds. These guidelines recommend choosing 95% as the 

confidence level. 

 Two-sided 95% confidence intervals can be reported simply using	"#$, &$', where #$ is the lower 

bound and &$ is the upper bound. Symmetrical two-sided 95% confidence interval can be reported 

as:  

() 	± 1.96	/"()'                 (1) 

Where:  

() is the prediction of the true emission value x, and  

/"()' is the standard uncertainty of the prediction () 

Estimates of confidence intervals for statistical model predictions can be obtained from appropriate 

procedures based on deviations between model predictions and data. These deviations should be 

used to check assumptions and evaluate model properties. 

Estimates of confidence intervals for mechanistic model predictions are typically obtained by varying 

forcing inputs and/or parameters multiple model runs. A sensitivity analysis will identify the most 

influential factors or combination of factors which should be used to set the upper and lower bounds 

of modeled emission rates. 
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C. Uncertainties associated with the prediction of net emissions resulting from the application of 

the models must take into account the uncertainties in the predictions of post-impoundment and 

of pre-impoundment emissions. 

By definition, net emissions are the difference between post-impoundment emissions and pre-

impoundment emissions.  Calculation of prediction uncertainty must take into account the 

uncertainties in predictions of post-impoundment and of pre-impoundment emissions. Predictions 

for post- and pre-impoundment emissions can be considered approximately uncorrelated so that 

standard uncertainties can be combined with: 

/012345 =	7/089:45; + /08=245;                 (2) 

Where:  

/012345 is the standard uncertainty of the net emissions prediction, 

/089:45 is the standard uncertainty of the post-impoundment emissions prediction, and 

 /08=245 is the standard uncertainty of the pre-impoundment emissions prediction. 

 

3.2 ESTIMATING AND MODEL3.2 ESTIMATING AND MODEL3.2 ESTIMATING AND MODEL3.2 ESTIMATING AND MODELING PREING PREING PREING PRE----IMPOUNDMENT EMMISIONSIMPOUNDMENT EMMISIONSIMPOUNDMENT EMMISIONSIMPOUNDMENT EMMISIONS            
 

3.2.1 3.2.1 3.2.1 3.2.1 IntroductionIntroductionIntroductionIntroduction    

One of the main impacts of the creation of a reservoir is the inundation of land containing natural 

ecosystems such as lakes, rivers, forest, grasslands, marshes, and land managed for agriculture, 

settlements or other use. In order to calculate a net greenhouse gas emission following the creation 

of a reservoir, and to model it properly, the sum of GHG fluxes (source and sinks) from natural 

ecosystems must be calculated or estimated. Pre-impoundment emissions may be measured or 

derived from literature. In this chapter we give guidance on how to model or estimate emissions 

prior to impoundment of the reservoir.   

At the global scale, land surfaces may represent a mosaic of carbon sink and carbon source, and the 

inundation of land to create a reservoir may modify those carbon dynamics. In many cases it is 

difficult to calculate or estimate the pre-impoundment GHG exchanges, especially in existing 
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reservoirs where no pre-impoundment mapping, analysis or relevant measurements were done. It 

may also be very challenging to estimate the changes in carbon storage. Generally, building a dam 

on a river would reduce water velocities and increase sedimentation rates, including the 

sedimentation of organic matter and carbon. The net emission of GHG requires an estimation of the 

sources of carbon and to keep track of the displacement of emissions. In many catchments the 

sources of carbon will come from upstream forests. Prior to inundation, GHG emissions resulting 

from upstream carbon sources would occur in the downstream river, while the same emission may 

occur from the reservoir when inundated. This displacement of emissions must be correctly 

accounted through the net emissions concept. 

Another reason to address and model the landscape elements in the inundated area is that the post-

impoundment GHG emissions and removals depend on the situation in aboveground biomass and 

the carbon stock in the soil of the area to be inundated, as the inundation would also mobilize 

carbon, GHG and nutrients in the soil. Organic matter that was stored on land over decades and 

centuries may lead to the release of nutrients and GHG after inundation. This trophic upsurge caused 

by flooded biomass and soil is known as a "GHG boost" in the early years of a new reservoir 

(Tremblay et al. 2005). Less degradable biomass such as large tree trunks will probably degrade over 

a century or even longer (Guyette et al. 2008, Arsenault et al, 2012). As in the case of natural lakes, 

reservoirs reduce water flows and increase particle and carbon sedimentation, which should be 

taken into account (Teodoru et al. 2012). 

This guidance complements the pre-impoundment assessment as outlined in the IEA Guidelines 

Volume 1, and expands the commentary on modeling of the relevant GHG fluxes, carbon stock 

changes and nutrient loads. The purpose is to cover the aspects necessary to collect information for 

the modeling of the net GHG emissions and calculation of the net impact of creating a reservoir. 

3.2.2 Systems Boundaries and GHG Fluxes in the Pre3.2.2 Systems Boundaries and GHG Fluxes in the Pre3.2.2 Systems Boundaries and GHG Fluxes in the Pre3.2.2 Systems Boundaries and GHG Fluxes in the Pre----ImpoImpoImpoImpounded Systemunded Systemunded Systemunded System    

Context 

In order to assess the net greenhouse gas emissions from a reservoir, we first need to estimate the 

sum of all GHG fluxes of the different natural terrestrial and aquatic ecosystems and managed land 

that were or will be affected by the inundation of the reservoir. The net change in the catchment’s 

GHG balance is calculated by subtracting the pre-impoundment emissions and the emissions caused 

by unrelated anthropogenic sources from the post-impoundment emissions. For this purpose, the 
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status of the downstream reaches prior to inundation should also be known. In the mass balance 

calculation, emissions from the ecosystem to the atmosphere (e.g. decay of organic matter as CO2 or 

CH4 have positive signs and removals from the atmosphere (e.g. sequestration of atmospheric CO2 

by photosynthesis) are negative. The gases to consider are CO2, CH4 and N2O as previously described 

in these Guidelines. Therefore, the main concern should be on processes affecting carbon and 

nitrogen transport and storage. GHG can be emitted through three pathways: diffusion, ebullition 

and degassing. In natural ecosystems, generally the first two are present; degassing may be 

occurring in some specific aquatic systems. 

Best Practice Guidelines: 

A. The landscape should be divided into three distinct areas; the area upstream of the reservoir, 

the area to be inundated and the area downstream affected by the reservoir. 

B. The net balance of emissions and removals of GHG in terrestrial and aquatic systems of the area 

to be inundated should be determined. 

 

Commentary 

A. Landscape should be divided into three distinct areas. 

1. Area Upstream of the Reservoir 

The upstream area consists of the catchment feeding to the existing or planned reservoir. The 

upstream area of the catchment (part 1 of Figure 3.1) excluding the maximum impoundment area 

within the catchment), should exhibit a negligible change in carbon dynamics due to impoundment. 

However, sources of carbon or nutrients entering the impoundment or downstream reaches from 

upstream could change the net GHG emissions of the reservoir or the downstream reaches. This 

aspect will be discussed in Sub-chapter 3.4 of this Volume. It is assumed here that the GHG exchange 

between the terrestrial and aquatic components of the upstream catchment, including those related 

to human activities, remain the same prior to and after impoundment of the reservoir. Therefore, 

the balance of the upstream catchment is regarded as zero in the pre-impoundment GHG 

calculations, while the GHG balances of the area to be inundated are addressed more accurately. 

2. Area to be inundated 
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For the purpose of assessing net GHG emissions, the inundation area can be schematically divided in 

three compartments: Water bodies, floodplain, and higher uplands. The water body compartment 

includes all aquatic ecosystems that remain aquatic systems throughout the year, such as river 

reaches, streams and lakes. The floodplain compartment corresponds to the inundated area where 

the soil is either flooded or saturated only during high flow periods, and the upland compartment 

covers the terrestrial part of the inundated area (IEA Guidelines Volume 1, 2012). It may prove 

convenient to further subdivide any of the above three compartments in order to better represent 

its heterogeneity in the inundated area. For example, when a substantial portion of the water bodies 

comprises lakes, the compartment should be subdivided in rivers/streams and lakes sub-

compartments. 

3. Area downstream of the impoundment affected by the reservoir 

Downstream reaches denote the part of the river where the reservoir, either existing or planned, 

affects the carbon dynamics. IEA Guidelines (Volume 1, Ch. 4) gives guidance on the variables to be 

measured for the downstream reaches. 

 

Figure 3.1. Conceptual image of the catchment before and after the reservoir construction.  
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B. The net balance of emissions and removals of GHG in terrestrial and aquatics systems of the 

area to be inundated should be determined. 

Terrestrial components 

Terrestrial areas are composed of forest, grasslands, temporary or permanent wetlands such as 

peatlands, bare areas, rural or urban settlements or agricultural areas such as croplands and 

pastures. Soil types may range widely from mineral or organic, and wetlands may be pristine or 

drained for exploitation in agriculture, forestry or other land use.  

The main source of carbon in the GHG balance of terrestrial ecosystems is atmospheric CO2 that is 

fixed by plants during photosynthesis for primary production of organic matter. GHG emissions in 

terrestrial environments are dominated by CO2, CH4 and N2O. A large proportion of CO2, annually 

sequestered in photosynthesis, is released by means of respiration of the autotrophic organisms, 

and aerobic or anaerobic decomposition of dead organic matter.  

Fluxes of CO2 are expressed as the net ecosystem exchange (NEE), which represents the balance 

between CO2 uptake through photosynthesis and release through total ecosystem respiration at a 

given moment in time. Net ecosystem productivity (NEP) represents the annual carbon stock change 

for a specific location, and should include losses of carbon in CH4 fluxes, from forest fires and insect 

outbreaks, as well as dissolved organic carbon (DOC) export. In the following, the special features of 

the most important terrestrial compartments are outlined. 

Forest 

Forest component is typically a significant sink of carbon. A net increase in forest biomass means 

removal of carbon from the atmosphere. As plants die or renew their belowground parts, some of 

the carbon ends as soil organic carbon stock, maintaining the forest carbon removal rate in the long-

term. Mineral forest soils do not emit CH4, they rather constitute a small methane sink. Carbon 

accumulation in mineral forest soil is a slow process. For studies covering only a few decades or time 

spans comparable to the forest regeneration cycle, the mineral soil carbon stocks may be assumed 

static in the calculation of pre-impoundment GHG balance. 

Organic forest soil carbon stocks may also be disturbed by land use. Organic rich soils such as 

peatlands are typically formed in moist conditions, accumulating the necromass of plants adapted to 

grow in wet, oxygen-poor conditions. Disturbance of organic soils by drainage may change the GHG 
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balance from net removal to net emission by exposing the soil to oxic decay, but strong CH4 

oxidation may also occur in dry organic soils. Peatlands have been drained for improving the forest 

growth. Drainage or organic soils may in some cases create a source of N2O. Drainage also causes 

increased oxidation of soil organic matter and increases CO2 emissions, and CH4 emissions may occur 

from drainage ditches (see IPCC 2013). Similarly, above ground biomass and its GHG fluxes should be 

estimated. National or regional forest inventories could be used to assess this component.  

Peatland 

Undrained peatlands may be a significant source of CH4, where also permanent carbon burial may 

occur at a significant rate. Those fluxes may be important in the pre-impoundment GHG balance of 

the inundation area. Ponds within peatlands could also be sources of both CO2 and CH4, either 

through diffusion or ebullition and should also be accounted for. Un-drained or drained peatlands 

have very high organic carbon stocks belowground that may be important in shaping the post-

impoundment GHG emissions. Peatlands have been drained mostly for reclaiming area for forestry 

or agriculture. Peat has been extracted in many parts of the world for production of energy or 

growing media. Drainage of peat extracting areas causes a permanent release of CO2 and CH4. A 

review of published data and emission factors concerning carbon accumulation and CH4 emission in 

natural un-drained, re-wetted or drained peatlands are available in the IPCC 2013 Wetland 

Supplement (IPCC 2013). 

Cropland 

Due to fertilizer use, croplands may be significant sources of N2O and play a significant role in the 

export of carbon and nutrients to the downstream catchment. Organic soils may have been drained 

for crop production similar to forestry. Drained organic soils in agriculture are known to emit large 

amounts of CO2 and N2O. Emission factors for organic rich croplands can be found from the IPCC 

2013 Wetland Supplement (IPCC 2013).  

Pasture 

Natural grasslands or shrublands may be used as pastures in dairy production. Ruminants emit CH4 

by enteric fermentation or from dung, forming a part of the net GHG balance in the pre-

impoundment landscape. While the grassland soil GHG balance may be close to zero, enteric 

fermentation of ruminants and anaerobic decay of dung cause CH4 emissions. Emission factors per 
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head of different ruminant species of methane can be found from the IPCC 2006 Guidelines Chapter 

10 (IPCC 2006). 

Aquatic components  

Although streams may represent a small surface area at catchment scales, they contribute to a large 

proportion of the ecosystem emissions and should be assessed adequately (Teodoru et al. 2009, 

Cole et al. 2007). Lakes have longer water residence time than rivers, favoring particle and carbon 

sedimentation and nutrients retention, which should be accounted for (e.g. Ferland et al. 2011, 

Teodoru et al., 2011). These aquatic systems can be a source of CO2 relative to the atmosphere, emit 

CH4, or act as a sink of carbon to the sediments according to the water residence time, productivity 

of the system and other parameters. There are published data on CO2 and CH4 emissions from 

natural lakes (e.g. Bastviken et al. 2004; Sobek et al. 2007, Therrien et al. 2005), and from rivers and 

streams (e.g. Campeau et al. 2014, Weyhenmeyer et al. 2012, Bouillon et al. 2012; Teodoru et al. 

2009, Guérin et al., 2006; Richey et al., 1988, 2002). They should be included as aquatic components 

in the calculation of net GHG balance of the inundated area.    

3.2.3 Estimation of the Pre3.2.3 Estimation of the Pre3.2.3 Estimation of the Pre3.2.3 Estimation of the Pre----Impoundment GHG ExchangeImpoundment GHG ExchangeImpoundment GHG ExchangeImpoundment GHG Exchange    

Context 

Sources of information on terrestrial ecosystem GHG exchange include direct measurements or in 

absence of measurements, representative literature data, national forest inventory statistics, global 

emission factors for managed land cover in different climatic zones (IPCC 2006, 2013). High 

resolution maps and satellite images could be combined to estimate surface areas of all relevant 

land cover and land use types. Models computing GHG emissions from cropland systems or forests 

have been developed (Colomb, Bernoux, et al. 2012), but none of the models cover all land cover or 

land use categories alone. Modeling of the landscape GHG exchange has to employ multiple tools, 

with a potentially large number of parameters and combined uncertainties. Because of the 

complexity in modeling the landscape GHG fluxes, a simplified approach using annualized emission 

factors is recommended for the basic purpose. 

Together with the terrestrial landscape elements, the annual contribution of the aquatic 

components in the GHG exchange within the inundated area should be estimated. Complex models 

should include transport of carbon, nutrients and dissolved GHG species in the aquatic components. 

For the basic net exchange GHG calculations, the flux rates of rivers, streams and lakes can be 
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derived from direct measurements or from sources in the literature (e.g. Bastviken et al. 2004; Sobek 

et al. 2007, Therrien et al. 2005, Campeau et al. 2014, Weyhenmeyer et al. 2012, Bouillon et al. 

2012). A simple regression equation model can be used to estimate CH4 emissions (Bastviken et al. 

2004). Current advancements in modeling point out the complexity in biogeochemistry in freshwater 

lakes or reservoirs, including transport of carbon (Hanson et al. 2011). While there has been 

advances in understanding and modeling of the processes behind the lake energy balance and GHG 

exchange (Subin et al., 2012), major work is still going on, aiming to integrate all landscape elements, 

their management and their combined impact on the GHG exchange. The international flux tower 

network FLUXNET (fluxnet.ornl.gov) provides a useful source of data in large spatial scales. 

Best Practice Guidelines: 

A. Loading of carbon and nutrients released naturally or by human activities from upstream and 

entering area to be inundated should be evaluated. 

B. The impact of reservoir on the downstream watercourse should be evaluated. 

 

Commentary 

A. Loading of carbon and nutrients, released naturally or by human activities and entering the 

impoundment area from upstream should be evaluated. 

Land cover and land use in the upstream catchment are relevant for estimating the pre-

impoundment loads and GHG emissions from the aquatic part of the pre-impoundment area. A large 

portion of the organic matter, released by decomposition in the upstream catchment will naturally 

pass through the freshwater systems, as water transports the degradable carbon from the forest soil 

to the ocean. On the way to the ocean, about 40 per cent of the carbon will be emitted to the 

atmosphere as CO2 (Cole et al 2007). Some carbon will also be stored in the sediments of rivers, 

lakes, reservoirs and wetlands, while the rest are transported to the ocean. These processes 

contribute to the natural background GHG emissions, but depending on the properties of the 

reservoir, may also affect the GHG emissions released due to the impoundment. It is good practice 

to evaluate the loads entering the impoundment from upstream. 

Carbon and nitrogen containing compounds that are leaching from the upstream catchment 

drainage network are conveyed through the river system to the reservoir (or future reservoir), 

where microbial activity may convert them to GHG. Measurements of these fluxes or estimation 
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through literature review are important for the understanding, model calibration and prediction of 

the pre-impoundment regime of GHG fluxes between surface and atmosphere. High resolution maps 

revealing the land cover and land use, statistics on population living in the catchment, and 

monitoring of water quality may give important information on the natural and human affected 

nutrient or organic matter inputs to the impoundment area. It is good practice to map all land cover 

types in the upstream catchment in order to build a complete image of the potential sources of 

nutrients and organic matter, including those related to human activities. 

B. The impact of reservoir on the downstream watercourse should be evaluated. 

 

In the pre-impoundment phase, it is important to establish baseline data on transport of dissolved 

GHG, carbon, and nutrients, as well as water-atmosphere fluxes of GHG in the river downstream of 

the future reservoir. An important portion of GHG emissions from a river is due to carbon loading 

from upstream catchments (see above and Cole et al. 2007). This may be changed after the 

introduction of a reservoir, and pre-impoundment data are needed to assess the difference. As one 

does not know how far downstream the reservoir impacts from the creation of the reservoir will 

work, it is important to establish baseline data from a sufficient long section of the river 

downstream. Baseline data for transport and emissions of GHG from the downstream river may be 

derived from direct measurements or literature data. Modeling of the changes in GHG emissions in 

the downstream river due to impoundment may make advantage of those variables. The results 

should be viewed against the pre-impoundment status of the river. Impacts of the terrestrial 

components, land cover and land use, as well as unrelated anthropogenic sources of nutrients and 

carbon the upstream catchment at the pre-impoundment situation determine the river GHG 

emission. 

3.3 MODELING POST3.3 MODELING POST3.3 MODELING POST3.3 MODELING POST----IMPOUNDMENT EMISSIONS IMPOUNDMENT EMISSIONS IMPOUNDMENT EMISSIONS IMPOUNDMENT EMISSIONS     
 

3.3.1 Introduction3.3.1 Introduction3.3.1 Introduction3.3.1 Introduction    

Emissions in the non-flooded area should not differ from pre-impoundment GHG emissions. The 

methodology for estimating pre and post GHG emissions in this area is described above. In case of 

changes in the catchment area land use, the impacts of a modification of river loads can be 

simulated by the reservoir model. Chapter 3.3 focuses only on the modified aquatic ecosystems: the 

reservoir and the impacted downstream river(s).  
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As already described, the objectives of the model will constrain the choice of the model in terms of 

complexity (number of substances, of processes, of dimensions, etc.). 

For aquatic models (reservoirs and rivers), the specific criteria of choice is the expected spatial 

(vertical and lateral) heterogeneities in the reservoir and in the reservoir construction design 

(withdrawn structures). If stratification or lateral heterogeneity is expected, then 3D models would 

probably be more definitive than 1D or 2D. Otherwise, a horizontal 1D (river) or 2D (reservoir) model 

may be sufficient. It should be noted that 3D models can be computationally expensive and users 

may have to compromise between computation time and spatial resolution. For this reason use of 

1D or preferably 2D models with higher resolution could be more efficient and accurate. In 

simulations of temperature profiles, the vertical direction mostly needs to be represented in high 

resolution. All other generic criteria (knowledge of the system and of the processes, availability of 

the input data, time, money, expertise, etc.) also apply for the choice of the post-impoundment 

model(s). 

3.3.2 Hydrodynam3.3.2 Hydrodynam3.3.2 Hydrodynam3.3.2 Hydrodynamic modelingic modelingic modelingic modeling    

Context 

In reservoirs and rivers, the hydrodynamics is a key driver of water biochemistry, and thus GHG 

emissions. Since the 1970s hundreds of ecological water quality models have been developed 

(Jørgensen et al., 1996) but the physical processes of transport and mixing within the water body are 

generally oversimplified (Hamilton and Schladow, 1997). Correct modeling requires proper inclusion 

of hydrodynamic parameters such as thermal structure, current velocities, local residence time, or 

the vertical mixing due to density stratification (Hamilton et al., 1997; Martin and McCutcheon, 

1999).The first stage of the GHG modeling work is the correct simulation of these parameters. 

Best Practice Guidelines: 

A. The hydrodynamics of the system (reservoir or river) should be thoroughly simulated and 

results should be carefully analyzed.  

Commentary 

A. The hydrodynamics of the system (reservoir or river) should be thoroughly simulated and 

results should be carefully analyzed. 
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Hydrodynamic models can give important information on the behavior of the system (reservoir or 

river) and the consequences of hydro operations, and may be used to identify likely significant 

hotspot(s) for GHG emissions (high residence time, high temperature, strong thermal stratification, 

etc.). The outputs of the hydrodynamics models do not give direct results on the potential GHG 

production and emissions from the modeled systems. However, once correctly developed, calibrated 

and validated, the outputs of the hydrodynamic model are used as input data for the water quality 

and GHG model. 

3.3.3 Coupling with the 3.3.3 Coupling with the 3.3.3 Coupling with the 3.3.3 Coupling with the WQ/WQ/WQ/WQ/GHG modelGHG modelGHG modelGHG model    

Context 

Once the hydrodynamics are properly simulated, results are available for WQ / GHG modeling. 

According to the model characteristics, this coupling can be done on or off line. The coupling must 

be adequate to ensure the closure of the mass balances. 

Best Practice Guidelines: 

A. The coupling between the hydrodynamic and the GHG models should be reliable and 

straightforward. 

Commentary 

A. The coupling between the hydrodynamic and the GHG models should be reliable and 

straightforward. 

The outputs of the hydrodynamic model are to be used for the WQ/GHG model. The coupling 

between the models should be reliable to avoid two drawbacks: 

• Avoid the information “loss” and the risk to not respect the mass balances; 

• Avoid numerical issues. 

The processes described by the hydrodynamic and biogeochemical models may have crucial 

differences e.g. in time steps, which would lead to problems in numerics. To answer these two 

points, it would be better to have the same code or the same developers for the two models. 

The coupling could be done on-line (advantage: sure to have the same model and no problem of 

mass balance or code “communication”, drawback: longer calculation time) or off-line. In this case, 
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the use of models from a same developer is preferable to avoid numerical issues between two codes 

with different conception.  

3.3.4 Water quality and GHG3.3.4 Water quality and GHG3.3.4 Water quality and GHG3.3.4 Water quality and GHG    

Context 

GHG (CO2, CH4 and N2O) production in a reservoir involves numerous and complex bio-geochemical 

processes in the sediment and in the water column. The simulation of GHG cannot be done without 

modeling the main WQ processes and parameters (oxygen, nutrients, etc.). As well, GHG model 

results cannot be analyzed and discussed without a good understanding of the main WQ processes 

in the systems. 

Best Practice Guidelines: 

A. A WQ model, without GHGs, could be used as a first estimation tool to assess the potential GHG 

production and emissions. 

B. GHGs, namely CO2, CH4 and N2O, should be considered as additional water quality parameters 

and the model should not only simulate GHG production and emissions but also the other relevant 

WQ parameters (e.g. oxygen, pH, nutrients, various species of C, N and P).  

C. More advanced models should also simulate phytoplankton dynamics (chlorophyll, sink of 

inorganic carbon and source of labile organic carbon), zooplankton and sediments. 

Commentary 

A. A WQ model, without GHGs, could be used as a first estimation tool to assess the potential GHG 

production and emissions. 

The simulation of some “common” WQ parameters such as dissolved oxygen can give information 

on the risk of GHG production in the reservoir and in the river. If no oxygen is present (usually in 

bottom water) and the primary production and carbon load are high, GHG production will probably 

be significant. On the other hand, if the water column or river is still oxic the risk is low. A first 

approximation of GHG risk using a WQ model that does not include GHG modules can be used as an 

improved and reliable risk assessment tool.  
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B. GHGs, namely CO2, CH4 and N2O, should be considered as additional water quality parameters 

and the model should not only simulate GHG production and emissions but also the other relevant 

WQ parameters (e.g. oxygen, pH, nutrients, various species of C, N and P).  

Processes responsible for the production and emission of GHGs are complex and depend upon many 

chemical parameters (Stumm and Morgan, 1996; Hamilton and Schladow, 1997; Jorgensen, 1999; 

Smits and van Beek, 2013). This interrelationship implies that GHGs cannot be modeled alone but 

rather as an additional chemical parameter.  

C. More advanced models should also simulate phytoplankton dynamics (chlorophyll, sink of 

inorganic carbon and source of labile organic carbon), zooplankton and sediments. 

In natural aquatic systems (reservoir or river), the chemistry is partly driven by the biology, especially 

the phytoplankton. Moreover, the benthic processes (oxygen demand and nutrient diffusion, among 

others) also control the WQ in the water column. For systems where processes are expected to be of 

the first order, more sophisticated models should be used. These models are recommended to 

include phytoplankton and sediment if necessary (diagenesis). The zooplankton compartment may 

be also explicitly simulated in very advanced models.  

Once again, the choice of the model relates to the main objective of the study.  

3.3.5 GHG emissions and C burial rates3.3.5 GHG emissions and C burial rates3.3.5 GHG emissions and C burial rates3.3.5 GHG emissions and C burial rates    

Context 

The emission pathways to consider are: diffusion, bubbling, degassing, downstream export and 

carbon burial as explained in Volume 1. 

Best Practice Guidelines: 

A. The minimum requirement for a GHG emission model is to simulate diffusive and degassing flux 

as well as downstream export. 

B. More advanced models should also consider ebullition and carbon burial (which implies a 

sediment model). 

Commentary 



 

 

IEA Hydropower Annex XII: Guidelines for Quantitative Analysis of Net GHG Emissions from Reservoirs - Volume 2: 

Modeling.  November 2015. 

 
 

46 

A. The minimum requirement for a GHG emission model is to simulate diffusive and degassing flux 

as well as downstream export. 

The WQ/GHG models described previously are used to establish the concentration in the water 

(reservoir and river). These concentrations can be then used to simulate GHG diffusion and 

downstream emissions from these aquatic systems: 

• Diffusive fluxes in the reservoir (and in the downstream river). The simulation of this flux 

requires the calculation of GHG surface concentration associated with a transfer 

function. Such transfer functions are also used for re-oxygenation at the water-

atmosphere interface. 

• Downstream emissions (degassing, diffusion and export in the downstream river). 

Strictly speaking, degassing occurs generally immediately downstream the water release 

when natural (waterfalls…) or artificial (weirs…) structures are present while other 

downstream emission fluxes may occur within many kilometers in the downstream 

reach. To model degassing , diffusion and downstream export, simulation of GHG and 

carbon species concentrations in the reservoir releases is needed. To a first 

approximation, conservative estimates of fluxes can then be calculated by subtracting 

the concentration in the reservoir releases water (model) from the concentrations in the 

upstream river (measurements). This estimate does not take into account the fraction of 

CH4 that is oxidized into CO2.  

B. More advanced models should also consider ebullition and carbon burial (which implies a 

sediment model). 

For ebullitive fluxes and carbon burial rates, calculating dissolved GHG concentrations in the water 

are not sufficient. It needs the use of additional specific modules: 

• Ebullitive fluxes. It requires the explicit simulation of the sediment compartment but it is 

complex to model and no fully reliable model exists to our knowledge. Fluxes can be 

estimated with literature data. 

• Carbon burial rates. It requires the explicit simulation of the sediment compartment 

(diagenesis model) associated with planned schedule of dredging the bottom and 

sediment flushing in dam management. 
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3.3.3.3.3.3.3.3.6666    Required input dataRequired input dataRequired input dataRequired input data    

Context 

The accuracy and reliability of the model rely greatly on the quality of the input data. The origin of 

the input data must be clearly identified and stated. Data collection may represent a significant part 

of the budget allocated to the modeling projects. Usually, this data collection is also used for the 

overall monitoring of the system (not only for modeling purpose).  

Best Practice Guidelines: 

A. Special care should be taken when collecting and validating input data, which is one of the most 

crucial stages. 

Commentary 

A. Special care should be taken when collecting and validating input data, which is one of the most 

crucial stages. 

For hydrodynamic modeling of reservoirs, the required input data may include: 

• Maps with the location of the inflows and outflows; 

• Bathymetry (at least the volumetric curve for 1D models) or initial topography for new 

projects; 

• Meteorological parameters; 

• Discharges (in and out); 

• Water temperature of inflow and outflow; 

• Land cover (for roughness at the bottom of new reservoirs); 

• Structure designs (discharge facilities, water intake, water release, spillway, gate type); 

• Reservoir operations; 

• Initial conditions. 

For hydrodynamic modeling of rivers, the required input data are almost the same: 

• Maps with the location of the inflows (tributaries); 

• Bathymetry, usually only cross sections are available; 

• Meteorological parameters; 
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• Discharges (in and out); 

• Water temperature of inflow and outflow; 

• Initial conditions. 

For simple WQ / GHG models, only a few parameters may be needed such as dissolved oxygen, 

nutrients or carbon. For more complex models, the list of parameters may increase to include total 

suspended solid, iron, GHGs, chlorophyll-a, phyto- and zoo-plankton, etc. The physico-chemical 

dataset often suffers from low measurement frequency, the result of the need to strike a balance 

between natural variability (seasons, flood, etc.) and technical and economic feasibility. The location 

of the measurement stations must also be thoroughly assessed.  

3.3.3.3.3.3.3.3.7777    Calibration and validationCalibration and validationCalibration and validationCalibration and validation    

Context 

The calibration is made by comparing simulation results and field measurements. The parameters on 

which the model must be calibrated are those included in the reservoir and river models.  

For hydrodynamics in reservoirs, model calibration is usually carried out on water temperature 

profiles and water velocity (speed and direction). For rivers, calibration parameters typically include 

water temperature in several stations and water levels. The highest stream flow velocities will occur 

in the river section with river bed roughness having the greatest impact on water surface levels.  

Therefore, water levels can be used as a key calibration parameter. 

For WQ/GHG, although the list of parameters depends on the choice of the model, the calibration 

must be done on some key model constituents including dissolved oxygen, nutrients and carbon 

species, including GHGs. In all the cases, the agreement between all the simulated parameters and 

the corresponding field measurements must be checked. 

Best Practice Guidelines: 

A. The calibration should be done on a sufficiently long period (at least one year) to be sure to 

cover seasonal variations. 

B. The quality of the calibration should be obviously characterized using statistical tools such as 

root-mean-square-error, cost function, coefficient of correlation, Taylor diagram, etc. 
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C. Once calibrated, the model should be validated with a different dataset than that used for the 

calibration. 

D. When data are not available, for a new reservoir as an example: 

• the model should be chosen considering existing models on similar systems, i.e.,  the same 

model(s) should be used with the same default calibration set. 

• the calibration and validation processes should be replaced by a thorough and 

comprehensive sensitivity analysis. 

Commentary 

A. The calibration should be done on a sufficiently long period (at least one year) to be sure to 

cover seasonal variations. 

For hydrodynamics, the calibration is done on a couple of parameters: drag coefficient (that 

characterizes the influence of the wind at the free surface, or respectively the heat exchange due to 

evaporation, the sensible heat exchange, and the momentum exchange), and roughness (especially 

in the rivers), and sometimes on parameters of the turbulence closure models, such as Secchi depth 

(usually forcing data) 

For WQ/GHG, depending on the model, the calibration is done on a number of parameters: process 

coefficients, constants, stoichiometric ratios, equilibrium concentrations. The calibration must be 

carried out in a step-wise and iterative manner, process by process, going from processes affecting 

independent state variables to processes affecting dependent state variables, starting from the 

coefficients for which the model appeared most sensitive.  

B. The quality of the calibration should be obviously characterized using statistical tools such as 

root-mean-square-error, cost function, coefficient of correlation, Taylor diagram, etc. 

Given the many interactions of substances/parameters and processes in a model, this procedure 

must be repeated until no further improvement is observed. To objectivize the agreement between 

simulations and measurements, statistical tools must be used. Among them, we can cite: the root-

mean-square-error (RMSE), cost function, coefficient of correlation or Taylor diagrams. (e.g. OSPAR, 

1998; Radach & Moll, 2006),.  
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Similar to forcing data (input data), the quality of the calibration relies on the quality of the field 

data. It should be noted that calibration of WQ models is more intricate than that for hydrodynamic 

models, due to the complexity of the chemical and biological processes. The input data for the 

monitoring program should be adapted to the model complexity. The minimum requirement for a 

reservoir is a vertical temperature profile per month in a station of the reservoir and a measurement 

in the river. The best solution is continuous measurements (vertical profile and rivers). 

C. Once calibrated, the model should be validated with a different dataset than that used for the 

calibration. 

Once calibrated, the model must be validated: the agreement between simulations and field 

measurements must be checked (statistically) for a relevant period (depending on the annual 

variability) without changing calibration parameters. 

D. When data are not available, for a new reservoir as an example: 

• the model should be chosen considering existing models on similar systems, i.e.,  the same 

model(s) should be used with the same default calibration set. 

• the calibration and validation processes should be replaced by a thorough and 

comprehensive sensitivity analysis. 

In case of a planned reservoir or future river modification, no calibration/validation data is available 

by definition. The calibration parameters can be adapted from a previous model developed for a 

similar aquatic system (climate, incoming loads) or from bibliographical data. In this case, a thorough 

sensitivity analysis must be done in order to test the robustness of the model (a small variation of a 

single calibration parameter may have huge effect on the result) and to see which parameters have 

the main impact on WQ and GHGs. Further analysis can then be done on the parameters (scientific 

research, expert opinion). 

3.4 MODELING THE IMPACT OF UNRELATED ANTHROP3.4 MODELING THE IMPACT OF UNRELATED ANTHROP3.4 MODELING THE IMPACT OF UNRELATED ANTHROP3.4 MODELING THE IMPACT OF UNRELATED ANTHROPOOOOGENIC SOUGENIC SOUGENIC SOUGENIC SOURCESRCESRCESRCES        

3.4.1 Introduction3.4.1 Introduction3.4.1 Introduction3.4.1 Introduction    

Man-made reservoirs impounding water create conditions different from those prevailing in natural 

fluvial or limnic ecosystems. Changes in oxic status of organic deposits may alter the biogeochemical 

cycles and affect the GHG balance of the landscape. Leaching of nutrients and organic matter due to 

land use or land use changes, degradation of soil, or release of wastewater may add to the risk of 
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GHG emissions or affect the sedimentation rate removing carbon from the short-term cycle. Without 

those sources, the GHG emissions from man-made reservoirs could be lower.  

The human-induced release of organic matter, nutrients and other material impacting directly or 

indirectly carbon cycling and GHG fluxes in the reservoir, but not directly due to the impoundment, 

were referred to as Unrelated Anthropogenic Sources (UAS) by the IPCC in the Special Report of 

Renewable Energy Sources (SRREN 2012) and in the Guidelines for Quantitative Analysis of Net GHG 

Emissions from Reservoirs, Volume 1 – Measurement Programs and Data (IEA Hydro 2012).   

Excess of nutrients, in particular phosphorus (P) and nitrogen (N), when released to the reservoir, 

enrich the ecosystem and cause eutrophication. Visible signs of eutrophic waters include harmful 

algal blooms and fish kills as a result of anoxic conditions that may occur in waters suffering from 

increased production of biomass and eventually necromass. Examples of activities contributing to 

loads of nutrients and organic matter are agriculture, animal husbandry, release of inadequately 

purified wastewater from settlements or industry, mining of minerals or organic deposits, and 

efficient forest management using fertilizers, drainage or soil amendment. Some nutrients may 

enter the reservoir directly, e.g. from fish farming. 

Direct measurements of UAS loadings are difficult if not impossible to obtain. Emissions of GHG’s 

emerging from the water surface carry no signatures of their origins. Recognition of significant levels 

of UAS can therefore only be based on circumstantial evidence, such as loads of nutrients and 

organic matter from identifiable sources caused by human activities. However, in some reservoir 

catchments with naturally high nutrient background concentration, impoundment and reservoir 

formation might also create significant increases in primary production and natural eutrophication, 

removing carbon from the atmosphere. This change and contribution to the carbon sink might be 

related to the change in hydrodynamic condition which increases euphotic depth in the water 

column and provide suitable habitat for growth of phytoplankton. 

For future management and mitigation of GHG emissions it is important to separate GHG emissions 

related to UAS from GHG emissions caused directly by the impoundment.  Activities in the 

catchment that are already, or might in the future increase the GHG emissions from the reservoir 

and its downstream reaches are then identified. Management of those activities in ways that 

effectively suppress the UAS brings evident and mutual benefits to the interest groups using the 

services of the reservoir for their multiple purposes. 
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This chapter outlines the methodology useful for distinguishing the potential risk activities in the 

catchment and for evaluating the contribution of UAS to total GHG emissions from the 

impoundment, especially those occurring as CH4. 

3.4.2 Identifying and Modeling Unrelated Anthropogenic Sources3.4.2 Identifying and Modeling Unrelated Anthropogenic Sources3.4.2 Identifying and Modeling Unrelated Anthropogenic Sources3.4.2 Identifying and Modeling Unrelated Anthropogenic Sources    

Context 

Separating and evaluating the contribution of UAS to the emissions and removals profile helps to 

more accurately analyze the relevance of the components comprising net GHG emissions of man-

made reservoirs. The impact of UAS should be determined both in the pre-impoundment and post-

impoundment phases. The pre-impoundment UAS impact may affect the “background” emissions of 

GHG from water bodies within the inundation area and the downstream reaches. Identifying the 

effects of UAS during the pre-impoundment phase might indicate similar or increased post-

impoundment impacts. 

The change in GHG emission due to UAS eutrophication can be evaluated and accounted. 

Eutrophication in man-made reservoirs may have contributions from several sources. After reservoir 

impoundment, increases in hydraulic retention time, leaching of nutrients from soils and 

decomposition of terrestrial vegetation may lead to “trophic upsurge”, which indicates a boost of 

primary production in many young reservoirs. This phenomenon of “trophic upsurge” in reservoirs 

may diminish a number of years after impoundment. But some reservoirs with a high background 

level of nutrients and organic matter may continue in a eutrophic state even after the period of 

“trophic upsurge”. However, these phenomena occurring in especially young reservoirs, should not 

be attributed to UAS. Only the external loads of nutrients and organic matter from terrestrial 

ecosystem can be regarded as eutrophication due to UAS.  

Direct measurement of the impact of the UAS with respect to the background GHG balance of the 

natural catchment or the impact due to impoundment may be very difficult to achieve, and 

modeling may provide the best means to assess this impact. This starts with assessing, via 

appropriate models, loads of key nutrients controlling the ecosystem productivity such as inorganic 

and organic phosphorus (P) and nitrogen (N) species. These can mimic primary production by 

phytoplankton and macrophytes, sedimentation, biological and chemical oxygen demand, and 

biogeochemistry of the watercourse. From this, the contribution of the additional loads to the 

occurrence of hypoxia, algal blooms, internal nutrient cycling and ultimately to the GHG balance may 
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be revealed, most probably leading to increased methane emissions. The challenge is how to 

separate the natural sources from the UAS causing eutrophication. When the methodology applied 

in modeling allows, the upstream sources should be identified. Such information is useful in 

mitigation and reservoir management planning. 

Best Practice Guidelines: 

A. Identification of UAS should be based on observation of potentially significant human activities 

according to procedures outlined in Volume 1 of these Guidelines (IEA Hydro. 2012). 

B. If the loadings from UAS are deemed significant, the contribution of UAS to overall GHG 

emissions or removals should be estimated using modeling. 

C. Careful consideration needs to be given to special cases involving UAS.  

Commentary 

A. Identification of UAS should be based on observation of potentially significant human activities 

according to procedures outlined in Volume 1 of these Guidelines (IEA Hydro. 2012). 

The impact of different UAS to overall net GHG emissions or removals in a man-made reservoir is 

likely to be shown as a complex cumulative response to the fluvial or limnic ecosystem. Separation 

of individual sources may require highly sophisticated scientific methods. However, the presence 

and activity of potential sources in the catchment should be used as an indicator of UAS. 

Observations showing the load may help to identify the quality and quantity of the source.  

Water quality monitoring may give relevant information of particular areas in the catchment causing 

loading from diffusive sources such as land use, or point sources such as sewage outlets from 

settlements or industry. Information extracted from remote-sensed land cover, land-use analysis or 

regional statistics may be used to evaluate the role of different land-use related sources of UAS. 

Indirect indices such as population equivalent (PE) may serve in the estimation of community 

sewage loads. 

In the absence of water quality monitoring data, literature values of similar man-made 

impoundments without obvious UAS effects should be employed for determining a reasonable 

reference level of organic or inorganic nutrient conditions, against which the conditions potentially 

affected by UAS can be compared. Similarly, natural fluvial or limnic systems may be used in defining 

a reference level for identifying the impact generated by both the reservoir and the possible UAS. 
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When no UAS can be identified, the comparison with natural systems may show the impact of the 

reservoir alone. 

B.  If the loadings from UAS are deemed significant, the contribution of UAS to overall GHG 

emissions or removals should be estimated using modeling. 

Since UAS is a component in the calculation of the net GHG emissions and removals (IEA Hydro. 

2012), a value equaling the respective GHG exchange rate (emissions or removals) should be 

assigned to each GHG species. The basis for such assignment could be the nutrient load entering the 

impoundment due to human activities in the catchment. Very low levels of activity may not be 

significantly different from the natural background. Modeling of the impact of UAS should therefore 

be able to distinguish the human impact from the natural background.  

Where the presence or contribution of UAS are not shown to be important, it is best practice to 

assign a value of 0 (zero) to all GHG’s (CO2, CH4, N2O) respectively. Thus the impact of highly 

uncertain UAS is eliminated from the calculation of the net GHG balance. Modeling of the loads can 

still be employed, e.g., to estimate the sensitivity of the impoundment for additional loads, or when 

seeking improvements in the reservoir management options. In guidance for national greenhouse 

gas inventories (IPCC 2006) the IPCC considers that the N2O emissions from reservoirs are due to 

only upstream sources such as agriculture or sewage treatment plants, and are reported in those 

categories, respectively. To avoid double counting N2O emissions, reservoirs are considered to be 

zero. If the reservoir net GHG balances are used in national inventories, the IPCC approach should be 

followed. That would have the same impact on emissions from a reservoir, as when the UAS has 

been evaluated and subtracted. For reservoir scale and mitigation purposes, it would still be useful 

to identify the upstream sources of N2O. 

When the UAS potential is deemed significant enough that it may affect the GHG emissions or 

removals, the relative share of UAS compared to natural loads should be determined. Nutrient loads 

originating from the identified UAS activities, prominently those of P and N, or of organic carbon as 

DOC and POC, could be used as proxies for the UAS impact on the increased emissions of GHG from 

the reservoir. Eutrophication could eventually launch hypoxic or anoxic conditions in the reservoir, 

and thereby promote CH4 emissions. While the linkage between reservoir nutrient concentration 

and occurrence of anoxia may be nonlinear, it is reasonable to assume that the probability of such 

occurrences increases with increasing trophic state in the water body. Since CH4 is considered to be 
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the most harmful GHG species emitted from reservoirs, efforts should be invested particularly in 

modeling of CH4 emissions.  

Because no direct protocol for measurement of the UAS impact on GHG emissions is available, 

modeling should be employed to distinguish the contribution of UAS from that of the impoundment. 

Hydrodynamics of the reservoir largely determine if and when the anoxic conditions may occur. The 

appropriate models should implement diffuse and localized nutrient loads and water borne 

transport mechanisms enriching the reservoir. The models should be parameterized according to the 

inventory of different land cover and land use types that can be identified in the catchment using 

e.g. remote sensing or high resolution maps.  

A simple model employs nutrient loads from population and industry, and characteristics of the 

different land cover and land-use types. When released by UAS, nutrient and carbon loading into the 

reservoir comes from point and non-point sources in the catchment region. Point sources mainly 

refer to wastewater from sewage systems and effluents from wastewater treatment plants or 

industry. Nutrients or carbon loads from point sources could be estimated or calculated through the 

concentration of nutrients and carbon in the effluents and their flow rate. Non-point sources of 

nutrients or carbon loads include agricultural runoff, erosion of managed soil, and wastewaters from 

population or live stocks in rural areas. Information on community sewage loads or industrial loads 

may be available from monitoring statistics. Population equivalent loads can also be applied if the 

population density or actual number of inhabitants in the catchment is known.  

Hydrological models of the catchment can be used to model the contribution of non-point sources of 

nutrients and carbon loads from terrestrial ecosystems into the reservoir. The assessment of 

relevant nutrient and organic matter sources in the model should be considered in two steps: 

1. Modeling of nutrient loads from the catchment, and 

2. Modeling the impact of these loads (including natural loads) to eutrophication, and including 

the reservoir hydrodynamics.  

The impact of load should be evaluated using models implementing both the hydrodynamics and the 

response of the man-made reservoir to the load of nutrients and carbon, and they should be able to 

predict the GHG emissions and removals and carbon burial to the sediment. Models similar to those 

used for post-impoundment situations are applicable for estimating the impact of UAS to the man-
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made reservoir, but the models should also account for the effects on primary production, nutrient 

cycling, and sedimentation related to eutrophication.  

The models should be parameterized using the input nutrient and organic carbon loads originating 

from the catchment. Best practices for modeling and simulation of post-impoundment are described 

in Chapter 3.3 of this document. Scenarios of different loads of nutrients and organic matter (see 

3.3.2) should be used to evaluate the impacts on eutrophication and GHG emissions and removals. 

C. Careful consideration needs to be given to special cases involving UAS.  

For certain reservoirs and under unusual conditions, complex issues surrounding UAS need to be 

taken into account in the assessment of net GHG 

Many existing and new reservoirs have multi-purpose features and provide a number of water-

related services beyond hydropower, such as irrigated agriculture, water supply, navigation and 

recreational activities. These can trigger significant anthropogenic activity in the watershed, along 

the reservoir rim and downstream of the project and hence a significant increase in external loadings 

to the reservoir. This needs to be considered in project planning, development and operations.  The 

critical question will be whether these external loadings are in some ways related to reservoir 

impoundment, or can be ascribed to UAS. 

Levels of nutrient and organic loading from a reservoir catchment often increase dramatically during 

and following high precipitation events (i.e. as a component of surface run-off). In many catchments, 

high precipitation events can be the most significant contributor to GHG emissions from both natural 

sources and UAS. It is therefore very important to make a clear separation between these natural 

and UAS contributions. While the assessment of pre-impoundment conditions may be useful in 

identifying natural conditions, the methodologies used will likely have been different to UAS, and 

care should be taken in the analyses.  

Some existing reservoirs may be in catchments where UAS loadings have changed dramatically since 

inundation and may be expected to continue to change.  This can be either as overall increases or 

through extreme levels of variability. In these situations, UAS loadings should be carefully integrated 

over the expected life of the project. 
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4.0 NET GHG EMISSION REPORTING 
 

4.1 INTRODUCTION4.1 INTRODUCTION4.1 INTRODUCTION4.1 INTRODUCTION    
 

The purpose of modeling is to undertake a quantitative analysis of net GHG emissions and changes 

in carbon stock, and understand the process of GHG emissions from an existing or planned reservoir. 

The purpose of reporting is to provide appropriate input to the project Environmental Impact 

Assessment (EIA) or similar document, related to licensing of a new or re-licensing of an existing 

project. Modeling may also be used to assign an annual emission factor (tCO2-e/GWh) for reporting 

requirements in the case of hydropower reservoirs. 

The net GHG emission approach allows comparison of emissions in the landscape prior to and after 

the impoundment, and a sound distinction of human activities that may contribute to the reservoirs 

GHG emissions. Transparent public reporting of robust modeling results also increases the 

understanding of where hydropower related emissions rank relative to other generation 

technologies. The document format depends on the specific context requirements and constraints of 

each project. Therefore the reporting format should be chosen according to the purpose of the work 

and the needs of reporting. It is important that the report follows the best practices of transparency 

and scientific clarity. When net GHG emissions and removals are reported, the complete chain, 

including the GHG balances at post-impoundment and pre-impoundment situations, and the 

identified UAS-related emissions, should be covered.  

4.2 REPORTING REQUIREMENTS4.2 REPORTING REQUIREMENTS4.2 REPORTING REQUIREMENTS4.2 REPORTING REQUIREMENTS    
Context 

The Guidelines - Volume 2 describes a road map (Chapter 1.4) and suggests a screening process 

(Chapter 2) as the initial GHG assessment. Irrespective of the outcomes of the screening process, 

comprehensive reporting of the screening data inputs, methodology and results is essential. The 

screening outcome may indicate a low risk of significant GHG emissions based on the parameters 

applied. Another possible outcome is an indication of a raised risk of GHG emissions in an existing 

reservoir or a planned project. In this latter circumstance, further study would be warranted. A third 

outcome of the screening process is that results return a high uncertainty factor, most likely due to 

an absence of similar reference data. This would trigger the requirement for more input to the 

screening process or directly to further study. 
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The reason for high GHG emissions may be due to the function of the reservoir impoundment, or the 

impact of UAS in the catchment. For all screening outcomes, a well-prepared report is required. 

Where the emissions are deemed low and no large GHG research program is needed, the report 

should satisfy not only the reservoir stakeholders, but also the legal and regulatory requirements.  

Best Practice Guidelines: 

A. The Screening Report on net GHG emissions should describe all relevant parameters and 
methodology used in a transparent manner. 

B. Conclusions and justifications covering the recommendations for the GHG and WQ 
measurement and monitoring program should be clearly reported. 

C. Modeling assumptions and methodology should be documented in a transparent manner. 
D. The Final Report should include the results and their uncertainty using the best scientific 

principles. 

Commentary 

A.    The Screening Report on net GHG emissions should describe all relevant parameters and 
methodology used in in a transparent manner. 

The information and data to be collected for the catchment and inundation areas of an existing or 

planned reservoir should cover all relevant features affecting the project’s net GHG balance. 

Guidelines - Volume 1 (IEA Hydro. 2012) lists the variables that may contribute to the net GHG 

emissions or removals. The data needs are similar to what should typically be collected for the EIA or 

other documents related to licensing a new or re-licensing an existing reservoir. Screening 

methodology should be based on published scientific knowledge, transparently described. The 

assumptions applied in the screening process, and restrictions of the screening should be 

transparently and adequately described. Reporting of all relevant data and reservoir features should 

be transparent and appropriately satisfy the legal and regulatory requirements. 

B. Conclusions and justifications covering the recommendations for the GHG and WQ 
measurement and monitoring program should be clearly reported. 

If the screening results suggest that a low risk of significant GHG emissions exists within the current 

modeling framework, the report should clearly state the rationale for a low level monitoring 

program for the GHG emissions (or key driving force parameters) and WQ.  

If the screening predicts adverse GHG emissions, the report should clearly state the need and outline 

a comprehensive research/monitoring program for the GHG emissions and WQ.  
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The reasons for the approach selected should be transparently explained, building on the principles 

applied in the screening process. The uncertainty involved in choosing the approach should be 

presented. The report should also outline where modeling is needed and set requirements for the 

modeling and monitoring program such that these needs are addressed in perpetuity.  

C. Modeling assumptions and methodology should be documented in a transparent manner. 

It is crucial to describe in the report the criteria used in the choice of the net GHG modeling 

approach. As described in Chapter 3.3 the questions to be addressed and some characteristics of the 

reservoir govern the kind of models to be used. Once the modeling approach is chosen, it is 

important to describe the assumptions used in the models, and how the models implement those 

assumptions. Because the net GHG approach consists of three separate entities, the pre-

impoundment net GHG balance in the inundation area, the post-impoundment net GHG balance of 

the impoundment and the downstream reaches, and the possible impact of UAS in the catchment, it 

is best practice to describe how these entities are implemented in the model(s). The report should 

transparently explain how the net GHG emissions or removals are obtained by modeling or 

estimating of the GHG balances of the elements. If there is not enough information available and 

simple assumptions are not justified to describe the effects of pre-impoundment GHG balance or the 

effect of UAS, it is appropriate to set the GHG balance of one or more of these elements to zero in 

the overall net GHG calculation (see Chapter 3.1.3 in this Volume and Volume 1, IEA Hydro 2012). 

The zero value is also appropriate for UAS, if no such human activity is present. The reasons leading 

to those evaluations should be transparently explained. 

The main criticisms of models are the lack of case studies or references justifying the relevancy of 

their methods. It is all the more true for recently or purposely developed models. In that case, a very 

thorough justification of the model components (e.g. concepts, numerical options, coding, 

drawbacks) must be described in the report. For widely and internationally used models, this stage is 

less crucial and can be replaced by a list of selected scientific papers. 

D. The Final Report should include the results and their uncertainty using the best scientific 
principles. 

The results of the model runs should be reported, including the simulation of the impacts of varying 

scenarios. These include the different management methods of the reservoir, different land use 

options in the catchment and other pertinent conditions. Scenarios based on the original 
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assumptions and aims (Guideline C, Chapter 4.2) and how they affect the model outcomes should be 

transparently described.  

4.3 EXAMPLES OF MODEL OUTPUTS 4.3 EXAMPLES OF MODEL OUTPUTS 4.3 EXAMPLES OF MODEL OUTPUTS 4.3 EXAMPLES OF MODEL OUTPUTS     
Context 

This chapter provides some examples of model outputs having 1D, 2D, and 3D dimensions. It also 

serves as an introduction of concepts to enable examples to be posted on the IEA Hydropower 

Agreement website (www.ieahydro.org). Examples of more comprehensive net GHG modeling can 

be found on this site and the format of digitally available examples is described in Appendix 1. 

Best Practice Guidelines: 

A. Model outputs should be focused on addressing the issues and reaching the target audience. 
B. For medium or long term simulations (beyond 20 years), several simulations using a range of 

possible forcing data should be done to provide a reliable range of results. 

Commentary 

A. Model outputs should be focused on addressing the issues and reaching the target audience. 

Time-series – 1D 

With deterministic models, all the simulated substances and fluxes (useful for GHGs) can be known 

at each time step and within each grid cell. A first way to export and use simulation results is the 

times series showing the evolution in concentration of a chemical species or a flux with time. This 

kind of output can be used for calibration purposes.  
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Figure 4.1 Example of time series showing the calibration of the parameter oxygen in a reservoir 
(lines: model, circles: measurements, red: surface concentrations, blue: bottom concentrations) 
(adapted from Chanudet et al., submitted) 

Cross sections and Maps – 2D 

In addition to the possibility of exporting data from a couple of single observation points, some 

models offer the possibility to integrate the results over the whole grid and therefore to calculate 

the average concentration or the total fluxes (for instance the diffusion GHG flux over the entire 

reservoir or river surface area). These outputs are essential to assess the impact of the entire system 

and calculate mass balances. 

Cross sections can be used to assess the change of a substance concentration along a river or 

reservoir section. In this kind of graph, the lateral changes (e.g., along the river axis or the north-

south axis for a reservoir) are usually plotted as a function of depth. This type of graph is suited for 

2DV or 3D models. 

Maps allow for a direct visualization of the geographical distribution of the simulated parameters. 

For 2DH models in which the substances are depth-averaged, this kind of representation gives a 

direct image of all the results and is very useful. For 3D models, a layer must be selected.  
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Figure 4.2. Map showing modelled water velocity in a reservoir (Chanudet et al., 2012) 

These kinds of outputs are mainly used to provide an overview of the results or to identify and 

present local hot spots.  

Video/animation – 3D 

Videos can be used for communication to various audiences and may be valuable in explaining the 

net GHG emissions or removals concepts as part of the report auditions. 

Predictions using simulations 

Once calibrated and validated, models can be used for GHG emission prediction. The main 

uncertainties rely on the forcing input data. For instance, what will be the meteorological conditions 

in 10 or 20 years in the context of global climate change? General Circulation Model results applied 

by the IPCC can be used to provide a range of long term variation in the scenarios.  

Once calibrated and validated models can be used to simulate various scenarios and to estimate the 

differences as compared to a “reference” ecosystem. Chapter 3.2 discusses the conditions important 

in the reference ecosystems. The interpretation of the scenario results must be made with caution. 

Indeed in the case of significant change, the structure of the ecosystem can be totally modified and 

some processes considered as not relevant, or of second order. This can result in calibration errors 

affecting scenario simulations. 
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B. For medium or long-term simulations (above 20 years), several simulations using a range of 
possible forcing data should be done to provide a reliable range of results. 

Examples of long-term scenarios include: 

• Effects of global climate change; 
• Exceptional hydrological or meteorological events; 
• Impact of a given project operation on the reservoir and/or the downstream river; 
• Impacts of structural features of the project; and 
• Changes in UAS during the scenario period. 

Depending on the model concept selected (i.e., 1D, 2D or 3D), such long-term simulations can be 

computationally expensive in terms of time to complete. Users must be aware of this when planning 

simulations over long periods. 
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APPENDIX 1 
 

EXAMPLES OF MODELS SUPPORTING THE NET GHG APPROACH 

Models developed with the concept of net reservoir GHG emissions and removals can potentially 

provide important information that could be used to support the management of existing reservoirs, 

the planning stages of new reservoirs, and the re-licensing of existing reservoirs. The IEA 

Hydropower Agreement website www.ieahydro.org maintains a collection of user exercises that 

illustrate how modeling has been used in the context of net GHG assessment following the IEA 

Guidelines (IEA 2012 and this Volume). Users of the Guidelines are invited to submit their work to 

the website. Modeling can support the net GHG assessment in multiple ways and levels. The intent 

of the website is to provide a collection of ideas, model approaches, and how model outputs have 

contributed to understanding the challenged inherent to net GHG estimation. The solutions need 

not be large scale ecosystem level models - solutions to specific challenges or questions are 

welcome.  

We understand that companies may not necessarily want to publish their modeling tools. Therefore, 

the main focus is the description of the modeling chain: setting modeling goals, methods used to 

address those goals, model runs or results and interpretation of the results with respect to the goals. 

Users can choose which details of the work are uploaded to the site. The examples collection 

supports various levels of abstraction of modeling, from publishing open source code to more 

general introduction of ideas, links to results and publications produced. All these levels are useful 

for the reservoir modeling community in exchanging ideas and progressing towards working 

solutions of new questions. As the modeling expertise accumulates on the website, we hope it 

becomes an internationally useful toolbox for modelers with interests in reservoir hydrodynamics 

and biogeochemistry.  

Description of modeling examples 

The modeling example can be described using the following terms (supported by the web design): 

Model name 

Authors: affiliation, contact information 

Abstract: Motivation for the modeling exercise, short description of methods used, main results and 
conclusions 
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Key words 

Introduction to the exercise 

Data and methods applied 

Results obtained and their usefulness for the reservoir net GHG impact 

Links to online publications and other materials, e.g. visualization of the results, websites describing 
the exercise 


