

Improving Performance from Existing Hydropower Facilities

Summary report by Subtask 2 of Task 16: Hidden and Untapped Hydropower Opportunities at Existing Infrastructure

Yoichi Miyanaga and Nobuo Hashimoto

September 2024

https://doi.org/10.5281/zenodo.13709397

THE INTERNATIONAL ENERGY AGENCY TECHNOLOGY COLLABORATION PROGRAMME ON HYDROPOWER

The International Energy Agency (IEA) Technology Collaboration Programme on Hydropower (IEA Hydro) is a working group of IEA member countries and others that have a common interest in advancing hydropower worldwide. Current members of IEA Hydro are Australia, Brazil, China, the EU, Finland, Japan, Norway, Switzerland and the USA. Sarawak EB is a sponsor. Member governments either participate themselves or designate an organization in their country to represent them on the Executive Committee (ExCo) and the working groups (Tasks), through which IEA Hydro's work is carried out. Some activities are collaborative ventures between IEA Hydro and other hydropower organizations.

Vision

Through the facilitation of worldwide recognition of hydropower as a well-established and socially desirable energy technology, advance the development of new hydropower and the modernization of existing hydropower.

Mission

To encourage through awareness, knowledge, and support the sustainable use of water resources for the development and management of hydropower.

To accomplish its Mission, the Executive Committee has identified the following programmebased strategy to:

- Apply an interdisciplinary approach to the research needed to encourage the public acceptance of hydropower as a feasible, socially desirable form of renewable energy.
- Increase the current wealth of knowledge on a wide array of issues currently associated with hydropower.
- Explore areas of common interest among international organizations in the continued use of hydropower as a socially desirable energy resource.
- Bring a balanced view of hydropower as an environmentally desirable energy technology to the worldwide debate.
- Encourage technology development.

IEA Hydro is keen to promote its work and to encourage increasing involvement of nonparticipating countries. All OECD and non-OECD countries are eligible to join. Information about membership and research activities can be found on the IEA Hydro website <u>www.ieahydro.org</u>.

CONTENTS

Acknow	wledgm	ents		v			
Execut	tive Sur	nmary		vii			
1	Introdu	uction		1			
	1.1	Backgro	ound	1			
	1.2	Overvie	w of subtask 2	1			
2	Study method						
	2.1		n of "Hidden Hydro"	2			
	2.2	Review from exi	of the development methodologies for improving performance sting hydropower facilities	2			
	2.3	Method	of case history collection	3			
3	Develo		nethodologies for improving performance from existing wer facilities	4			
	3.1	Categor	ization of development methodologies	4			
		3.1.1	Type I: renewal of existing water channel and power generation facilities	6			
		3.1.2	Type II: Expansion, new construction and redevelopment	7			
	3.2	Identific	ation of "Hidden Hydro"	8			
		3.2.1	Characteristics of R&U projects in Annex 11	8			
		3.2.2	Importance of operational improvements	9			
		3.2.3	Basic requirements and development methods for "Hidden Hydro"	9			
4	Case ł	nistories	of "Hidden Hydro"	11			
	4.1	Overvie	w of the case histories	11			
	4.2	Charact	eristics of "Hidden Hydro"	16			
		4.2.1	Type I: Renewal of existing facilities	16			
		4.2.2	Type II: Expansion/new construction/redevelopment	17			
		4.2.3	Type III: Operational improvement	19			
		4.2.4	Improvements of performance through the defelopment of "Hidden Hydro"	20			
	4.3	Develop	ment of "Hidden Hydro": challenges and solutions	21			
		4.3.1	Solutions to technical challenges	21			
		4.3.2	Solutions to economic challenges	23			
		4.3.3	Solutions to environmental challenges	24			
5	Summ	ary and o	conclusions	25			
6	References						
Appen	dix A	Summa	ry of case history data	A.1			
Appen	dix B		ower generation from environmental flows: characteristics and les	B.1			

TABLE OF FIGURES

Figure 1. Location map of the case histories	11
Figure 2. Breakdown by the region	15
Figure 3. Breakdown by the development type	15
Figure 4. Breakdown by the requirements for "Hidden Hydro"	15
Figure 5. Output increase rate for Type I and Type II cases	21

TABLE OF TABLES

Table 1.	Case histories of R&U projects collected in Annex 11	1
Table 2.	Categories of Type I development (renewal of existing water channel and power generation facilities) and Annex 11 cases falling into each category	3
Table 3.	Categories of Type II development (expansion, new construction and redevelopment) and Annex 11 cases falling into each category	3
Table 4.	Basic requirements for "Hidden Hydro" improving existing hydropower facilities)
Table 5.	Categorization of "Hidden Hydro" development methods for existing hydropower facilities	כ
Table 6(a)-(c). Case histories of "Hidden Hydro"12	2
Table 7.	Characteristics of "Hidden Hydro" in Type I categories and corresponding cases16	3
Table 8.	Characteristics of "Hidden Hydro" in Type II categories and corresponding cases18	3
Table 9.	Characteristics of "Hidden Hydro" in Type III categories and corresponding cases20)
Table 10). Specific solutions to technical challenges in case histories	2
Table 11	I. Specific solutions to economic challenges in case histories	3
Table 12	2. Specific solutions to environmental challenges in case histories	1

ACKNOWLEDGMENTS

The IEA TCP on Hydropower Task 16 has been implemented since its statement of objectives was approved by the 35th Executive Committee in March 2019. A subtask on the improvement of the performance of existing hydropower has been led by Japan, with the cooperation of the Task 16 members including Australia, the European Union, Switzerland and the United States, and the other related organizations, taking about four years to collect and analyse case histories. This technical report was prepared by the Japanese members of Task 16, Yoichi Miyanaga and Nobuo Hashimoto, and was reviewed by Japan's Domestic Expert Committee and the members of Task 16 expert meeting.

We wish to thank the task manager and the members of Task 16, the Executive Committee Secretary, the members of Japan's Domestic Committee and Expert Committee, the Ministry of Economy, Trade and Industry, the New Energy Foundation and the Japan Electric Power Information Center, for [their guidance and cooperation. We deeply thank Mr. Niels Nielsen, the former Executive Committee Secretary, for his valuable advice and cooperation.

Yoichi Miyanaga

IEA Hydro Task 16: Subtask 2 coordinator

LIST OF ABBREVIATIONS

CA	Concrete Arch (dam type)
CG	Concrete Gravity (dam type)
E-flows	Environmental flows
FIT	Feed in Tariff
HEPCO	Hokkaido Electric Power Company, Inc., Japan
Hidden Hydro	Hidden and untapped hydropower opportunities on existing infrastructure
	(definition is shown in Section 2.1)
IEA	International Energy Agency
KEPCO	Kansai Electric Power Company, Inc., Japan
MLIT	Ministry of Land, Infrastructure Transport and Tourism, Japan
RF	Rock-fill (dam type)
RPS	Renewable Portfolio Standard
TEPCO	Tokyo Electric Power Company Holdings, Inc., Japan

EXECUTIVE SUMMARY

The IEA Technology Collaboration Programme (TCP) on Hydropower Task 16: Hidden and Untapped Hydropower Opportunities on Existing Infrastructure (hereinafter abbreviated as "Hidden Hydro") aims to provide a framework to enable and support an increased development of "Hidden Hydro" globally. The term "Hidden Hydro" generally refers to hydropower potential that is not included in the current national inventories or that could be used more rationally than in conventional ways. It is an important concept of hydropower potential in consideration of further development of hydropower particularly in the countries where most of economically and technically feasible hydropower projects have been developed.

Task 16 consists of five subtasks as follows:

Subtask 1: Updating hydropower inventories

Subtask 2: Improving performance from existing hydropower facilities

Subtask 3: Adding power to non-power dams and water management facilities

Subtask 4: Hidden storage

Subtask 5: Hydropower technology research and innovation in the context of "Hidden Hydro"

This report describes the results of Subtask 2 activities.

The objective of Subtask 2 is to identify "Hidden Hydro" in the improvement of performance from existing hydropower facilities based on the case history study and thereby to contribute to further performance improvement through future modernization projects.

The Subtask 2 study consists of a review of development methodologies for improving performance from existing hydropower facilities and a case history study of "Hidden Hydro." Data on case histories were collected basically through literature and questionnaire surveys. Japan served as the subtask coordinator, and the study was conducted with the cooperation of Australia, the European Union, Switzerland and the United States.

To identify "Hidden Hydro" related to the improvement of performance from existing hydropower facilities, the following basic requirements have been introduced based on the review of case histories collected in Annex 11: Renewal & Upgrading of Hydropower Plants (2016).

- A) Effective use of water resources including unused or overlooked potential in existing facilities
- B) Introduction of advanced or improved methodologies to maximize plant performance
- C) Enhancement of reliability and flexibility to meet market needs

Furthermore, development methods for "Hidden Hydro" are categorized into three types as follows:

Type I: Renewal/refurbishment

Type II: Expansion/new construction/redevelopment

Type III: Operational improvement

IEA Hydro Task 16: Subtask 2 Summary Report. 2024.

On the basis of the requirements and the categorization of development methods, a total of 113 case histories have been collected systematically covering a wide range of projects from Annex 11 (2016), Annex 15: Decision-making for Maintenance Works and Upgrading of Hydro Facilities (2021) and other literature.

From the analysis of the case histories, major findings on the characteristics of "Hidden Hydro" are summarized as follows:

Type I: Renewal of existing facilities

- Improved methods to improve efficiency and durability of turbine/generator
- Improved methods to reduce cost and period of construction work
- Utilization of unused river flow
- Capacity factor improvement by downsizing turbine/generator
- Response to market needs such as enhancement of peak supply capacity and frequency control function, variable speed operation of pumped storage power plant, etc.
- Improvement of intake and water channel facilities to enhance power plant performance
- Increasing output and power generation by diversion from the other catchment

Type II: Expansion/new construction/redevelopment

- Utilization of various types of unused potential such as environmental flows from the dam, unused river flow, spilled water at the dam, unused water head in existing water channels, etc.
- Response to market needs such as enhancement of peak supply capacity and expansion/new construction of pumped storage power plant

Type III: Operational improvement

- Expansion of flow range for power generation
- Efficient operation of existing power plant by diversion from the other catchment
- Optimization of intake discharge management
- Systematic renewal/expansion considering the operation of cascade power plants
- Optimization of power plant operation through more accurate dam inflow forecasts

The most frequent challenges in the development of "Hidden Hydro" are technical issues and successful solutions are technical innovations. Particularly in type III projects, there is much room for improvement of performance using rapidly progressing technologies such as digital technologies extending the range of power plant operation, integrating meteorological observation, reservoir inflow prediction and dam operation, etc.

Economic efficiency is also a major concern in most projects. The solutions include cost reduction through technical innovations in design, construction and operation and maintenance (O&M). Policy support is expected to enhance such technical innovations.

Most environmental challenges are not significant barriers to development because renewal, expansion and operational improvement projects have less additional environmental impact than new construction projects.

IEA Hydro Task 16: Subtask 2 Summary Report. 2024.

1 INTRODUCTION

1.1 Background

In the countries that are advanced in hydropower development, hydropower resources that can be developed economically have decreased to the extent of resulting in a slowdown in development. In general, hydropower development is planned on the basis of existing hydropower resource inventories. The resources available for development are limited to the theoretical potential by various factors such as the level of technology, the concept of economic evaluation and the harmonization with the natural and social environments. These factors vary with the countries and times involved. There are also unutilized water resources outside the scope of existing resource inventories, such as water resources available at water management facilities that are not designed for hydropower generation. Therefore, when trying to identify further hydropower potential in a country that is advanced in hydropower development, it is important to re-examine the resource inventories used as the basis for planning and evaluate the potential that has not been fully recognized in past surveys.

To address this challenge, Task 16: Hidden and Untapped Hydropower Opportunities on Existing Infrastructure (hereinafter abbreviated as "Hidden Hydro") was initiated in 2019 under the IEA Technology Collaboration Programme (TCP) on Hydropower. Task 16 consists of five subtasks as follows:

- Subtask 1: Updating hydropower inventories
- Subtask 2: Improving performance from existing hydropower facilities
- Subtask 3: Adding power to non-power dams and water management facilities
- Subtask 4: Hidden storage
- Subtask 5: Hydropower technology research and innovation in the context of "Hidden Hydro"

This report describes the results of Subtask 2 activities.

1.2 Overview of Subtask 2

The objective of Subtask 2 is to identify "Hidden Hydro" in the improvement of performance from existing hydropower facilities based on the case history study and thereby to contribute to further performance improvement through future modernization projects. According to the IEA Hydropower Special Market Report (2021), more than 20% of the global hydropower generation units will be more than 55 years old by 2030 and require modernization. The results of Subtask 2 can help optimize modernization projects globally.

The Subtask 2 study consists of a review of development methodologies for improving performance from existing hydropower facilities and a case history study of "Hidden Hydro." Data on case histories were collected basically through literature and questionnaire surveys, and, if possible, power plant owners were interviewed.

In the implementation of Subtask 2 activities, Japan served as the subtask coordinator, with the cooperation of other Task 16 members, including Australia, the European Union, Switzerland and the United States. The activities take place from March 2019 to December 2023.

2 STUDY METHOD

2.1 Definition of "Hidden Hydro"

The term "Hidden Hydro" generally refers to hydropower potential that is not included in the current national inventories or that could be used more rationally than in conventional ways.

Specific examples include the following:

- New potential identified through a review of existing hydropower resource inventories
- Potential for use at non-power dams and water management facilities
- New potential for use arising from technical innovations such as the development of lowhead hydropower equipment
- Potential for expanded use at existing power plants such as the use of water released from a dam reservoir

This study focuses on "Hidden Hydro" related to the improvement of performance from existing hydropower facilities. In addition to the general definition of "Hidden Hydro," it is necessary to establish more specific requirements. Therefore, conventional development methods were categorized by the analyses of many cases of improving performance from existing power plants, and more specific requirements for "Hidden Hydro" were introduced.

2.2 Review of the development methodologies for improving performance from existing hydropower facilities

Annex 11: Renewal and Upgrading of Hydropower Plants (2016), of the IEA TCP on Hydropower has collected and analysed 70 case histories related to the renewal and upgrading (R&U) of existing power plants in different countries. Annex 15: Decision-making for Maintenance Works and Upgrading of Hydro Facilities (2021) has also collected various case histories in different countries including the Annex 11 data in a study on decision-making and asset management concerning R&U of hydropower facilities.

In this study, conventional R&U methods are categorized using the Annex 11 data, which cover various cases of R&U. The Annex 15 data are used in the next step to collect case histories of "Hidden Hydro."

In general, the performance of existing power plants includes those related to i) power output and power generation, ii) reliability and flexibility of power supply, iii) environmental conservation and iv) safety from or resilience against disasters. The objective of R&U projects is mostly the rehabilitation or enhancement of these types of performance.

In this study, we focus on the performance related to i) and ii) because they are thought to be directly related to "Hidden Hydro."

2.3 Method of case history collection

Case histories of "Hidden Hydro" related to the improvement of performance from existing hydropower facilities are collected, after determining basic requirements (refer to Section 3.2), mainly by data collection from Annex 11, Annex 15, other literature, interviews with power plant owners, and a questionnaire survey of the members of the IEA TCP on Hydropower and cooperating individuals. The case histories thus collected are documented as a summarized table attached to this report as Appendix A.

3 DEVELOPMENT METHODOLOGIES FOR IMPROVING PERFORMANCE FROM EXISTING HYDROPOWER FACILITIES

3.1 Categorization of development methodologies

The method for R&U of existing power plants has been practiced for a long time with the aim of increasing power output or power generation, and there are many case histories of this approach.

			Decident	Before the project ^{*3}		After the project		Output
Code *1	Name of Power Plant	Country	Project Type ^{*2}	Commissio ning Year	Output (MW)	Commissio ning Year	Output (MW)	Increase (%) ^{*4}
JP01	Houri No. 2	Japan	NC		—	2012	0.035	_
JP02	Kikka	Japan	RD	1956	0.46	2000	0.56	22
JP07	Shin-Kuronagi No. 2	Japan	NC		—	2013	1.9	_
JP08	Okutataragi	Japan	Renewal	1998	1932	2019	1932	0
JP10	Shin-Takatsuo	Japan	RD	1918	5.8	1999	14.5	150
JP14	Shiroyama	Japan	Renewal	1965	250	2010	250	0
JP15	Toyomi	Japan	Renewal	1929	56.4	2013	61.8	10
JP16	Tsuchimurokawa	Japan	NC		—	1999	0.35	
JP17	Nishikinugawa	Japan	Renewal	1928	1	1999	1.2	20
JP18	Minakata	Japan	Renewal	1929	24.1	2000	26.7	11
JP19	Himekawa No. 2	Japan	Renewal	1935	14.4	2010	14.4	0
JP20	Oguchi (Channel 1)	Japan	Renewal	1938	11.5	2011	12	4
JP21	Doi	Japan	Renewal	1938	8	2010	8.2	3
JP22	Kamishiiba	Japan	Renewal	1955	90	2010	93.2	4
JP23	Kawabaru E-flows	Japan	NC		_	2011	0.15	
JP24	Tagokura	Japan	Renewal	1961	380	2012	400	5
JP26	Kagehira	Japan	Expansion	1968	46.5	2010	46.65	0
JP27	Shin-Onagatani No.1	Japan	RD	1955	4	2001	7.5	88
JP29	Saikawa	Japan	Renewal	1923	1.7	2003	1.7	0
JP32	Shin-Taishakugawa	Japan	RD	1924	4.4	2006	11	204
JP34	Yusuharagawa No. 3	Japan	Renewal	1930	2.58	2008	2.8	9
JP36	Okutadami/Otori	Japan	Expansion	1960/63	455	2003	742	63
JP36-2	Okutadami E-flows	Japan	NC		_	2003	2.7	
JP39	Okukiyotsu No. 2	Japan	NC			1996	600	
JP41	Hanakawa	Japan	RD	1908	0.1	2011	0.13	30
JP44	Maruyama/	Japan	Renewal	1954/71	201	2020	222.4	11
	Shin-maruyama							
JP45	Kumagawa No. 1	Japan	Renewal	1922	2.4	2015	2.6	8

Table 1. Case histories of R&U projects collected in Annex 11

			Designt	Before the p	project ^{*3}	After the p	project	Output
Code *1	Name of Power Plant	Country	Project Type ^{*2}	Commissio ning Year	Output (MW)	Commissio ning Year	Output (MW)	Increase (%) ^{*4}
NW01	Embretsfoss IV	Norway	RD	1921	9	2013	52.5	483
NW02	Hemsil II	Norway	Renewal	1960	82	2006	98	20
NW03	Hemsil III	Norway	NC	—	—	2019	83	—
NW04	Hol 1	Norway	Renewal	1956	186	2012	220	18
NW05	Hunsfos East/West	Norway	RD	1926	15.5	2008	27.5	77
NW06	Iveland II	Norway	NC	—	—	2016	45	—
NW07	Ranasfoss III	Norway	RD	1922	54	2016	81	50
NW08	Kongsvinger	Norway	Expansion	1975	21	2011	43	105
NW09	Rendalen	Norway	Expansion	1971	92	2013	186	102
FI01	Pirttikoski	Finland	Renewal	1959	110	2010	152	38
FR01	Sisteron	France	Renewal	1975	244	2014	256	5
US01	Abiquiu	USA	Expansion	1990	13.8	2012	16.9	22
US02	Boulder Canyon	USA	Renewal	1910	10	2012	5	-50
US03	Cheoah	USA	Renewal	1919/49	144.7	2012	162	12
US04	North Fork	USA	NC	—	—	2013	3.6	—
US05	Fon du Lac	USA	Renewal	1924	12	2013	12	0
NZ01	Benmore	New Zealand	Renewal	1965	540	2012	NA	—
NZ02	Waitaki	New Zealand	Renewal	1934	90	2017	NA	—
SW01	FMHL+	Switzerland	NC	—	—	2016	240	—
AU01	Poatina	Australia	Renewal	1965	360	2010	372	3
AU02	Tungatinah	Australia	Renewal	1955	125	2013	140	12
BR01	Estreito	Brazil	Renewal	1969	1050	2012	1050	0
CH01	Gezhouba	China	Renewal	1981-88	2715	2022	3213	18

Table 1. (continued)

*1: The code used in the Annex 11 report

*2: NC=New construction, RD=Redevelopment

*3: For expansion or redevelopment projects, the commissioning year and output capacity in the "Before the project" column are those for the existing power plant, part of which is utilized by the newly constructed power plant.

*4: For R&U or expansion projects, calculated as (post-R&U/expansion output - *3 output) / (*3 output)

*4: For redevelopment projects, calculated as (output of the new plant + post-redevelopment output of the old plant-*3 output) / (*3 output)

Annex 11 has collected a total of 70 case histories of R&U projects, which are thought to cover a wide range of development opportunities. In categorizing and analysing the case histories, Annex 11 pays attention mainly to the trigger causes of R&U, policy background and the technologies involved. In this study, for the purpose of considering "Hidden Hydro," the case histories are categorized paying attention to development methods for improving performance related to power output and power generation and the reliability and flexibility of power supply. The 70 cases include 50 cases that involve efforts to increase power output and power generation, restore performance, and enhance reliability and flexibility. Table 1 shows these case histories.

First of all, these cases can be categorized into two types: development that aims to enhance performance by renewal of water channel and power generation facilities (Type I) and expansion of existing facilities or construction of new power plants using existing facilities (Type II). Type II also includes "redevelopment" which involves renewing or abolishing existing facilities and constructing new plants using part of existing facilities.

3.1.1 Type I: renewal of existing water channel and power generation facilities

Thirty-five cases fall into the category of Type I. These can be classified, according to performance improvement methods, as shown in Table 2. These methods are largely classified into "renewal of electro-mechanical equipment," "change in intake discharge/hydraulic head" and "renewal of civil engineering facilities."

Cate	egory	Specific Measures	Corresponding Cases	Number of Cases	Output Increase (%)
Renewal of electro- mechanical equipment	Increase in output	Improving turbine/generator efficiency without changing intake discharge/hydraulic head)	JP15, JP17, JP18, JP20, JP21, JP22, JP24, JP34, JP45, FR01, US03, NZ01, AU01, AU02	14	3-20
	Improvement of durability	Improving wear resistance of turbine	JP19, JP45	2	8
		Improving cavitation resistance of turbine	NZ01, BR01	2	—
	Addition of new functions	Upgrading the frequency control function	FI01, AU01	2	3-38
		Improving grid connectivity	NZ01	1	—
		Adding phase adjustment capability	BR01	1	—
		Installing variable speed generator at existing pumped storage power plant	JP08	1	0
	Others	Restoring performance of aged turbine/generator	JP14, US05	2	0
		Downsizing turbine/generator	US02	1	-50
		Repairing turbine/generator	NZ02	1	—
Change in intake discharge/	Utilization of unused river water	Increasing intake discharge and improving turbine/generator efficiency	NW02, NW04, NW07, Fl01, CH01	5	18-50
hydraulic head	Change in intake water	Changing turbine installation height	JP02	1	22
	level/tailwater level, etc.	Raising dam height	JP44	1	11
Renewal of civil engineering facilities	Renewal of intake weir	Renewing aged intake weir and shortening intake interruption period	JP29	1	0

Table 2. Categories of Type I development (renewal of existing water channel and power generation facilities) and Annex 11 cases falling into each category

The most common method in the Type I category is "renewal of electro-mechanical equipment," which relies solely on the improvement of turbine/generator efficiency. There are 14 cases falling into this category. The improvement of turbine/generator efficiency is achieved mainly by changing the type of turbine or the number of turbines or optimizing turbine design through refined design technologies such as CFD analysis.

The second most common method is "change in intake discharge/hydraulic head," which aims to increase output by increasing the river water intake discharge and improving turbine/generator efficiency. Five cases fall into this category. Three cases in Norway (NW02, NW04 and NW07) and CH01 in China increase intake discharge from the abundant river water. In FI01 in Finland, intake discharge is increased after considering possible adverse effects such as the influence on the operation of other power plants in the same river system and on the river environment.

Other cases include the following: improvement of durability such as the wear resistance and cavitation resistance of turbines (four cases); addition or upgrading of functions such as frequency control, grid connectivity, phase adjustment operation and variable speed generator (five cases); measures to increase hydraulic head such as changing the installation height of turbine or raising dam height (two cases); downsizing of facilities that have become excessively large because of changes in flow regime (US02); and shortening of the intake interruption period by refurbishing aged intake weir (JP29).

3.1.2 Type II: Expansion, new construction and redevelopment

Twenty-one case histories fall into the Type II category. These cases can be classified, as shown in Table 3, into the development either using unused potential or without using unused potential. In this study, "expansion", "new construction" and "redevelopment" are differentiated as follows:

Expansion: Adding new power generation units to existing plant

New construction: Constructing a new power plant using part of existing plant facilities

Redevelopment: Constructing a new power plant by renewing or abolishing the existing plant and using part of the existing plant facilities

Type II development is an effective opportunity to increase the output and power generation from existing power plants. Development using unused potential provides more options (e.g. equipment, location) than the developments in Type I. The most common methods in Table 3 are the construction of a new power plant using the environmental flows (e-flows) from the intake dam (six cases), the abolishment of the existing power plant with the construction of a new power plant to increase intake discharge/hydraulic head (six cases). Power plants utilizing e-flows, etc. that were not originally designed for power generation are relatively small output facilities usually with restrictions on intake discharge and site location. In contrast, redevelopment involving the construction of new power plants replacing existing plants is thought to facilitate the planning of increases in output and power generation.

The third most common method is the construction of a new power plant using unused river flow and existing facilities (three cases). In all cases, river flow is sufficiently high to allow an increase of intake discharge for power generation using the existing intake dams, headrace channels, etc.

Development without using unused potential includes the new construction of a pumped storage power plant using existing facilities (two cases) and the expansion of the peak supply capacity of the existing conventional hydropower plant (JP36). In NW09 in Norway, a new unit is installed for power supply during the operation interruption period for the repair of the aged existing unit,

and two units are used alternately without changing the intake discharge and output. All of these projects contribute to the improvement of the reliability and flexibility of power supply.

Most of the 50 case histories shown in Table 1 can be categorized as Type I or Type II. However, there are also cases, such as JP32, where the renewal of existing facilities and the construction of new power plants using existing facilities were carried out concurrently.

Table 3. Categories of Type II development (expansion, new construction and redevelopment) and Annex 11 cases falling into each category

Category		Specific Measures	Corresponding Cases	Number of Cases	Output Increase (%)
Development using unused potential	Expansion/new construction	Construction of a new power plant using e-flows, etc. from the dam	JP01, JP16, JP23, JP26, JP36-2, US04	6	—
		Construction of a new power plant using unused river flow and existing facilities	JP07, NW03, NW06	3	—
		Expansion to increase intake discharge of existing power plant	NW08, US01	2	22-105
	Redevelopment	Renewal or abolishment of existing power plant and construction of a new power plant using existing facilities	JP10, JP27, JP32, JP41, NW01, NW05	6	30-483
Development without using unused	Expansion/new construction	Expansion to increase peak supply capacity of existing power plant	JP36, JP39, SW01	3	63
potential		Expansion to enhance flexibility in the operation and maintenance of existing power plant	NW09	1	102

3.2 Identification of "Hidden Hydro"

3.2.1 Characteristics of R&U projects in Annex 11

Some of the R&U projects in Annex 11 improving the performance of existing power plants are found to have achieved an increase in output or power generation through advanced or improved methods. These meet the requirements of the general definition of "Hidden Hydro" in Section 2.1.

In addition, Type I projects utilizing unused river water in Table 2 and Type II projects using unused potential in Table 3 are considered to be the developments using unused potential that is not included in the existing hydropower inventories.

As for the improvement of reliability and flexibility, some cases involve the enhancement of features such as grid stabilization, peak supply capacity and demand-supply balancing. Although these are only part of the important features of hydropower, they are becoming even more important because of the changing conditions in the power market such as the massive introduction of variable renewables. Such changes in the market needs may trigger new types of development.

3.2.2 Importance of operational improvements

Besides R&U projects, it is also necessary to consider the possibility of performance enhancement through operational improvements. Some of the case histories shown in Table 2 and Table 3 include operational improvements. For example, US02, which is classified as the downsizing of turbine/generator in the Type I category, made operation at higher capacity factors possible by downsizing the facilities that had become excessively large due to the change in flow regime. In US01, which is classified as expansion using unused potential in the Type II category, operation at a higher overall utilization rate of river water was made possible by installing additional facilities capable of power generation even when the river flow is lower than the minimum discharge required by existing facilities. Other commonly used operational improvement approaches, though not listed in Table 2 or Table 3, include managing the intake discharge and intake water level, optimizing the operation of cascade reservoirs, and diverting water from other catchments. Since there has been little aggregated information on operational improvements, it would be worthwhile to collect case histories.

3.2.3 Basic requirements and development methods for "Hidden Hydro"

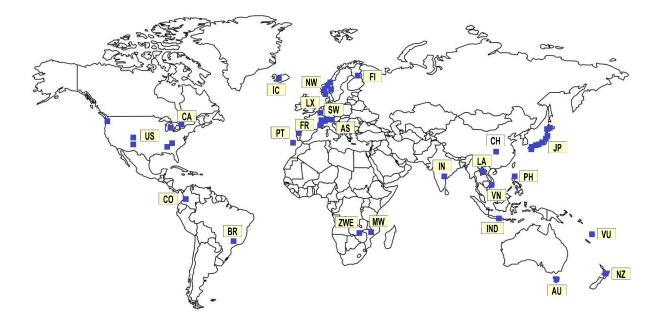
In view of the general definition given in Section 2.1 and the discussions above, basic requirements for "Hidden Hydro" have been introduced, as shown in Table 4, from three points of view: effective use of water resources, advanced or improved methods and response to needs in the market. These requirements can be used as a basis for the systematic collection of case histories of "Hidden Hydro." It should be noted, however, that because judgment criteria about "advanced or improved methods" and "needs in the market" are not always definite, there is a need for discussions and reviews by experts.

Basic Requirements	Examples
 A) Effective use of water resources including unused or overlooked potential in existing facilities 	 Utilization of unused water head at dam Water diversion from other catchments Extension of flow range for power generation
 B) Introduction of advanced or improved methodologies to maximize plant performance 	 Improvement of electro-mechanical equipment Improvement of civil engineering facilities Optimization of power plant operation
C) Enhancement of reliability and flexibility to meet market needs	 Addition or improvement of pumped storage power generation function Upgrading of frequency control function

Table 4. Basic requirements for "Hidden Hydro" improving existing hydropower facilities

On the basis of Table 2 and Table 3, and considering operational improvements, development methods of "Hidden Hydro" have been categorized as shown in Table 5.

Table 5. Categorization of "Hidden Hydro" development methods for existing hydropower facilities


	Development Methods	Examples of "Hidden Hydro"				
I Rene	ewal of existing facilities					
I-1	Renewal of electro-mechanical equipment without changing intake discharge/hydraulic head	 Improvement of turbine/generator efficiency by advanced or improved method Shortening the interruption period through the improvement of turbine/generator durability 				
I-2	Renewal of electro-mechanical equipment changing intake discharge/hydraulic head	Utilization of unused head or unused river flow				
I-3	Renewal of electro-mechanical equipment adding new functions	 Addition or enhancement of functions contributing to reliability and flexibility 				
I-4	Renewal of civil engineering facilities	• Enhancement of water intake capability by advanced or improved method				
II Expa	ansion/new construction/redevelopmen	t				
II-1	Development using unused potential	 Utilization of unused river flow Utilization of unused water head, e-flows, etc. Effective use of water resources through diversion from another catchment 				
II-2	Development without using unused potential	Enhancement of peak supply capacityUpgrading of pumped storage power plant				
III Ope	erational improvement					
III-1	Optimized operation of electro- mechanical equipment	Expansion of flow range for power generation				
III-2	Optimized operation of reservoir/power plant	 Improvement of power plant operation efficiency by advanced or improved method Optimized operation of the power plant through diversion from another catchment 				

4 CASE HISTORIES OF "HIDDEN HYDRO"

4.1 Overview of the case histories

On the basis of the basic requirements shown in Table 4, a total of 113 case histories have been collected from Annex 11, Annex 15 and other literature.

The location of the case histories on the world map is shown in Figure 1. The outline of the case histories is summarized in Table 6(a) to (c). Many cases of power generation using environmental flows (e-flows) from the dam have been found, and they are separately summarized in Table 6(c).

Code	Country	N	Code	Country	N	Code	Country	N	Code	Country	N
AS	Austria	1	AU	Australia	2	BR	Brazil	1	CA	Canada	1
СН	China	1	СО	Colombia	1	FI	Finland	1	FR	France	2
IC	Iceland	2	IN	India	1	IND	Indonesia	1	JP	Japan	65
LA	Laos	1	LX	Luxembourg	1	MW	Malawi	1	NW	Norway	9
NZ	New Zealand	1	PH	Philippines	1	PT	Portugal	4	SW	Switzerland	6
US	USA	6	VN	Vietnam	1	VU	Vanuatu	1	ZWE	Zimbabwe	1

N: Number of the case histories

Figure 1. Location map of the case histories

				After the p	oroject	Develop-	НН
Code ^{*1}	Name of Power Plant	Country	Project Type ^{∗2}	Commissi oning Year	Output (MW)	ment Type ^{*3}	Require- ments ^{*4}
JP02	Kikka	Japan	RD	2000	0.56	I-2	A
JP07	Shin-Kuronagi No. 2	Japan	NC	2013	1.9	II-1	А
JP08	Okutataragi	Japan	Renewal	2019	1932	I-3	С
JP10	Shin-Takatsuo	Japan	RD	1999	14.5	II-1	A
JP19	Himekawa No. 2	Japan	Renewal	2010	14.4	I-1	В
JP24	Tagokura	Japan	Renewal	2012	400	I-1	В
JP27	Shin-Onagatani No.1	Japan	RD	2001	7.5	II-1	А
JP29	Saikawa	Japan	Renewal	2003	1.7	I-4	В
JP32	Shin-Taishakugawa	Japan	RD	2006	11	II-1	А
JP36	Okutadami/Otori	Japan	Expansion	2003	742	II-2	С
JP39	Okukiyotsu No. 2	Japan	NC	1996	600	II-2	С
JP41	Hanakawa	Japan	RD	2011	0.13	II-1	A
NW01	Embretsfoss IV	Norway	RD	2013	52.5	II-1	A
NW02	Hemsil II	Norway	Renewal	2006	98	I-2	A
NW03	Hemsil III	Norway	NC	2019	83	II-1	A
NW04	Hol 1	Norway	Renewal	2012	220	I-2	А
NW05	Hunsfos East	Norway	RD	2008	15	II-1	А
NW06	Iveland II	Norway	NC	2016	45	II-1	A
NW07	Ranasfoss III	Norway	RD	2016	81	II-1	A
NW08	Kongsvinger	Norway	Expansion	2011	43	II-1	А
FI01	Pirttikoski	Finland	Renewal	2010	152	I-2, I-3, III-2	A, C
FR01	Sisteron	France	Renewal	2014	256	I-1, III-1	В
SW01	FMHL+	Switzerland	NC	2016	240	II-2	С
US01	Abiquiu	USA	Expansion	2012	16.9	II-1, III-1	A, B
US02	Boulder Canyon	USA	Renewal	2012	5	I-2, III-1	В
US03	Cheoah	USA	Renewal	2012	162	I-1	В
AU01	Poatina	Australia	Renewal	2010	372	I-3	С
BR01	Estreito	Brazil	Renewal	2012	1050	I-1, I-3	B, C
CH01	Gezhouba	China	Renewal	2022	3213	I-2	A

Table 6(a). Case histories of "Hidden Hydro"(selected from Annex 11, excluding power generation using e-flows from the dam)

*1: The code used in the Annex 11 report

*2: NC=New construction, RD=Redevelopment

*3: See Table 5.

*4: See Table 4 (HH: Hidden Hydro).

				After the p	roioot	Develop	НН
Code*1	Name of Power Plant	Country	Project Type	Commissi	Output	Develop- ment Type ^{*2}	Require-
104.04	Osiaswa	lanan		oning Year	(MŴ)		ments ^{*3}
JP101	Ooigawa	Japan	Renewal	2013	68.2	I-4, III-2	B
JP102	Kawahira No. 2	Japan	NC	2006	0.12	-1, -1	A, B
JP103	Yukomanbetsu	Japan	NC	2014	0.69	-1	A
JP104	Konokidani	Japan	NC	2016	0.2	II-1	A
JP105	Kitanomata No. 3	Japan	NC	2010	0.06	II-1	A
JP106	Okususobana No. 2	Japan	NC	2017	0.98	II-1	A
JP107	Shin-Iwamatsu	Japan	RD	2016	16	II-1	A
JP108	Shimoyama	Japan	Renewal	2005	3.6	I-2, III-1	В
JP109	Shin-Kousa	Japan	RD	2019	7.2	II-1	A
JP110	Yugashima	Japan	Renewal	2012	2	I-2	Α
JP111	Sakaigawa	Japan	Renewal	2019	24.2	I-4, III-2	A, B
JP112	Shumarinai	Japan	NC	2013	0.88	II-1, III-2	A, B
JP113	Shirotagawa	Japan	Operation	2016	3.1	III-2	В
JP114	Nakazato	Japan	Operation	2010	0.85	III-2	В
JP115	Kaminojiri No. 2	Japan	NC	2002	13.5	II-1	A, B
JP116	Nakatsugawa No. 2	Japan	NC	2002	1.8	ll-1	A
JP117	Yukawa	Japan	RD	1997	17.4	II-1	A
JP118	Yabukami No. 2	Japan	NC	2016	4.5	II-1	А
JP119	Azumi	Japan	Renewal	1999	623	I-4, III-2	A, B
JP120	PS in Kurobe River	Japan	Operation	2019-	—	III-2	A, B
JP121	Akiba No.3 (Large Turbine)	Japan	NC	1991	45.3	II-1	A
JP122	Higashimachi	Japan	Operation	2019	32.8	III-2	A, B
AU102	Tods Corner	Australia	NC	1966	1.7	II-1	Á
NZ101	Whakamaru	New Zealand	Renewal	2017	127.2	I-2	С
PT101	Madeira/Socorridos	Portugal	RD	2007	24	II-2	A, C
PT102	Salamonde II	Portugal	NC	2015	224	11-2	C
PT103	Frades II	Portugal	NC	2017	780	11-2	C
PT104	Valeira	Portugal	Operation	NA	246	III-1	A, B
AS101	Obervermuntwerk II	Austria	NC	2018	360	11-2	C
IC101	Burfell	Iceland	Renewal	1999	270	II-1	Ă
IC102	Burfell II	Iceland	NC	2018	100	II-1	A
LX101	Vianden	Luxembourg	Expansion	2014	1290	II-2	C
FR101	La Centrale de Mathay	France	Expansion	2019	1.5	II-1	A
SW101	Profray	Switzerland	Renewal	2007	0.38	I-2, III-1	B
SW102	Schils	Switzerland	RD	2021	13.5	II-1	A
SW103	Milan	Switzerland	Expansion	2023	4.2	II-1, III-1	A, B
SW104	Glarey	Switzerland	Expansion	2023	2.2	II-1	A
SW104	Farettes	Switzerland	Expansion	2025	22.5	II-1	A
CA101	London Street	Canada	Expansion	2016	6	II-1	A
US101	Ludington	USA	Renewal	2010	2172	I-2	C
US101	Alabama (3plants)	USA	Renewal	2020	503	I-2	B
CO101	Salvajina	Colombia	Renewal	2014	125	I-1 I-2	A
LA101	Nam Ngum1	Laos	Expansion	2012	125	II-2	C
PH101	Maris Main Canal 1	Philippines	NC	2017	8.5	II-2 II-1	A
VN101							
	Thac Mo Srisailam Left Bank	Vietnam	Expansion	2014	225	II-1	A
IN101		India Malawi	NC NC	2003	990	II-2	C
MW101	Tedzani IV Sarakata Biyar	Malawi		2021	19	-1	A
VU101	Sarakata River	Vanuatu	Expansion	2009	0.6	II-1	A
ZWE101	Kariba South	Zimbabwe	Expansion	2018	1050	II-1	A

Table 6(b). Case histories of "Hidden Hydro"(selected from Annex 15 and literature, excluding power generation using e-flows from the dam)

*1: The code used in this study, *2: See Table 5, *3: See Table 4 (HH: Hidden Hydro)

			Ductorst	After the	oroject	Develop-	НН
Code ^{*1}	Name of Power Plant	Country	Project Type	Commission ing Year	Output (MW)	ment Type ^{*2}	Require- ments ^{*3}
JP01	Houri No. 2	Japan	NC	2012	0.035	II-1	А
JP16	Tsuchimurokawa	Japan	NC	1999	0.35	II-1	А
JP23	Kawabaru E-flows	Japan	NC	2011	0.15	II-1	А
JP26	Kagehira (Unit 2)	Japan	Expansion	2010	0.15	II-1	А
JP36-2	Okutadami E-Flows	Japan	NC	2003	2.7	II-1	А
JP201	Dashidaira	Japan	NC	2014	0.52	II-1	А
JP202	Isawa No. 4	Japan	NC	2012	0.17	II-1	A
JP203	Shin-Tonami	Japan	NC	2011	1.00	II-1	А
JP204	lino	Japan	NC	2014	0.23	II-1	A
JP205	Shin-Kushihara	Japan	NC	2015	0.23	II-1	А
JP206	Okuwanojiri	Japan	NC	2011	0.48	II-1	A
JP207	Kuttari	Japan	NC	2015	0.47	II-1	А
JP208	Doshi Dam	Japan	NC	2006	0.05	II-1	А
JP209	Azuma No. 2	Japan	NC	2006	0.23	II-1	A
JP210	Koami	Japan	NC	2007	0.13	II-1	A
JP211	Takato Sakura	Japan	NC	2017	0.20	II-1	А
JP212	Aihara	Japan	NC	2014	0.08	II-1	A
JP213	Akiba No.3 (small turbine)	Japan	NC	1991	1.60	II-1	A
JP214	Managawa Dam	Japan	NC	2003	0.49	II-1	А
JP215	Isawa No. 3	Japan	NC	2014	1.50	II-1	А
JP216	Inekoki	Japan	NC	1999	0.51	II-1	А
JP217	Kazunogawa Microhydropower	Japan	NC	2014	0.16	II-1	A
JP218	Ayado	Japan	NC	1998	0.67	II-1	А
JP219	Torao	Japan	NC	2011	0.27	II-1	А
JP220	Kyogoku Meisui No Sato	Japan	NC	2016	0.41	II-1	A
JP221	Akigami	Japan	NC	2016	0.29	II-1	А
JP222	Sakore	Japan	NC	2018	0.385	II-1	A
JP223	Higashigochi	Japan	NC	2001	0.17	ll-1	A
JP224	Shin-Okuizumi	Japan	NC	2018	0.32	II-1	А
JP225	Hitotsuse E-flows	Japan	NC	2013	0.33	ll-1	А
JP226	Kamishiiba E-flows	Japan	NC	2013	0.33	II-1	А
US04	North Fork	USA	NC	2013	3.6	ll-1	А
NW201	Hegsetdammen kraftverk	Norway	NC	2010	0.23	II-1	A
PT201	Castelo do Bode	Portugal	Operation ^{*4}	2020-	54	III-2	A, B
IDN201	Wonorejo Dam	Indonesia	NC	2002	0.2	ll-1	A

Table 6(c). Case histories of "Hidden Hydro"

(related to power generation using e-flows from the dam, selected from Annex 11, Annex 15 and other literature)

*1: The codes for JP01 and JP26 used in the Annex 11 report, as well as the other codes used in this study.

*2: See Table 5.

*3: See Table 4 (HH: Hidden Hydro).

*4: E-flows from existing power generation facilities and outlet conduits at the dam

Looking at the regional distribution, we notice that 71 cases are in Asia (65 of which are in Japan), 27 in Europe, seven in North America, four in Oceania, and four in other regions (Figure 2).

The category of development methodologies reveals that there are 26 cases of Type I, 83 cases of Type II and 18 cases of Type III. Thus, the number of Type II cases is the largest, and many cases utilize unused potential such as e-flows from the dam (Figure 3).

A comparison of different categories of basic requirements for "Hidden Hydro" reveals that there are 88 cases in the A category, 24 in the B category, and 16 in the C category, indicating that the number of cases in the A category is the largest (Figure 4).

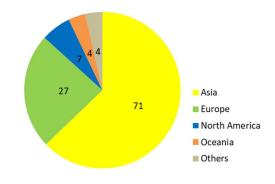


Figure 2. Breakdown by the region

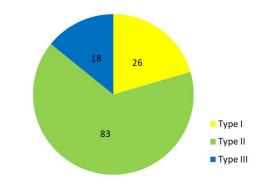


Figure 3. Breakdown by the development type

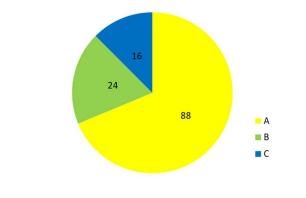


Figure 4. Breakdown by the requirements for "Hidden Hydro"

4.2 Characteristics of "Hidden Hydro"

4.2.1 Type I: Renewal of existing facilities

Table 7 summarizes the characteristics of "Hidden Hydro" in the Type I development categories and the corresponding case histories.

Тур	e of Development	Characteristics	Case Histories	Number of cases	Output Increase (%)
I-1	Renewal of electro-	A shorter interruption period is achieved by improving turbine/generator durability	JP19, BR01	2	0
	mechanical equipment without changing	Cost reduction and shorter interruption period achieved by reuse of existing casing and downsizing of equipment	JP24	1	5
	intake discharge/ hydraulic head	Improvement of partial load efficiency by adopting a unique turbine air supply system	FR01	1	5
		Increase of power generation by improving turbine/generator efficiency	US03, US102	2	0-12
I-2	Renewal of electro- mechanical equipment	Increased output/power generation by using unused river flow	NW02, NW04, FI01, CH01, CO101	5	11-38
	changing intake discharge/	Increased output/power generation by using existing unused regulating reservoir	JP110	1	25
	hydraulic head	Increased effective head by changing turbine installation height	JP02	1	22
		Increased peak supply capacity by increasing maximum discharge	NZ101	1	19
		Increased peak supply capacity by increasing maximum discharge at pumped storage power plant	US101	1	8
	Improvement of capacity factor by downsizing turbine/generator	US02, JP108, SW101	3	-64 - -43	
I-3	Renewal of electro-	Improvement of flexibility by upgrading frequency control capability	FI01, AU01	2	3-38
	mechanical equipment	Improvement of flexibility by adding phase adjustment capability	BR01	1	—
	adding new functions	Introduction of variable speed generator at pumped storage power plant	JP08	1	—
I-4	Renewal of civil engineering	Shorter intake interruption period after a high run-off by renovation of aged intake weir	JP29	1	0
	facilities	Flow capacity improvement by retrofitting headrace channel for conveying water from multiple rivers	JP101	1	0
		Increased output/power generation of the existing power plant by diversion from another catchment	JP111, JP119	2	0

Table 7. Characteristics of	"Hidden Hydro'	in Type I categor	ries and corresponding ca	ases
-----------------------------	----------------	-------------------	---------------------------	------

Type I-1 "renewal of electro-mechanical equipment without changing discharge/hydraulic head" includes widely known methods such as replacement with higher performance turbine/generator based on the sophisticated design technologies through CFD analysis since around 2000. Except for these well-known methods, we selected three cases of "Hidden Hydro," involving the improvement of the wear resistance and cavitation resistance of turbines to achieve shortening of interruption period; one case involving the reuse of existing plant parts and the downsizing of equipment to achieve cost reduction and performance enhancement; and one case involving the range of operation. These methods can be regarded as good practices to improve conventional methods and make renewal efforts even more effective in performance improvement.

Note that the term "without changing hydraulic head" in this category means no alteration of the installation height of the intake, outlet, and turbine/generator.

In the category of Type I-2 "renewal of electro-mechanical equipment changing discharge/hydraulic head," there are seven case histories utilizing "Hidden Hydro" of unused river flow, etc., to increase intake discharge and output, and the number of cases of this method is the largest in Type I-2. Two cases of increasing peak supply capacity (conventional hydropower and pumped storage hydropower) contributed to the improvement of reliability and flexibility of power supply. CO101 is a case of increasing discharge and output by utilizing the redundant turbine power allowed in the design and renewing only the generator. US02 and JP108 are cases of capacity factor improvement by downsizing the turbine and generator.

In the category of Type I-3 "renewal of electro-mechanical equipment adding new functions," case histories are enhancing or adding functional features such as frequency control, phase adjustment operation and variable speed generator in pumped storage power generation, and all cases contribute to the improvement of reliability and flexibility of power supply. Because of the massive introduction of variable renewables in the coming years, these measures for functional enhancement are thought to become even more important.

The phase adjustment operation capability in BR01 involves a compressed air system installed to the draft tube of the Francis turbine to lower the water level so that the units can operate as synchronous condensers.

Type I-4 "renewal of civil engineering facilities" includes a case achieving a shorter interruption period by renovating an old gabion dam, which had been frequently washed out during high runoff, and a case improving flow capacity by retrofitting the headrace channel of a run-of-river type power plant. Both methods helped increase power production.

4.2.2 Type II: Expansion/new construction/redevelopment

Type II-1 "development using unused potential" includes cases involving various forms of utilization of unused potential associated mainly with rivers, release flow from the dam, and water channels.

Although expansion/new construction using unused river flow is a widely practiced method, we selected the cases according to the Category A basic requirements for "Hidden Hydro." Among these cases, US01 and JP102 also can be categorized in Type III because they utilize river flow lower than the minimum flow required for existing plant operation.

D	Type of evelopment	Characteristics	Case Histories	Number of cases	Output Increase (%)
II-1	Development using unused potential	Expansion/new construction of power generation facilities using e-flows from the dam, etc.	Cases in Table 6(c) except for PT201	34	—
		Expansion/new construction of power generation facilities using unused river flow	JP07, NW03, NW08, US01, JP102, JP115, VN101, VU101, IC101, IC102, CA101, SW102, SW103, SW104, SW105	15	22-236
		Expansion/new construction of power generation facilities using spilled water at the dam, etc.	NW06, JP106, JP118, JP121, ZWE101, MW101	6	40
		New construction of power generation facilities using the water released for irrigation from the dam	JP112	1	—
		Expansion/new construction of power generation facilities using unused water heads in existing water channels, tributary water intake facilities, fish ways, etc.	JP103, JP104, JP105, AU102, FR101	5	50
		New construction of power generation facilities using unused water head in reregulating reservoir of existing power plant	JP116, PH101	2	_
		Redevelopment using unused river flow and existing facilities to increase output	JP10, JP27, JP41, NW01, NW05, NW07, JP107, JP109, JP117	9	27-483
		Redevelopment using unused water head and existing facilities to increase output	JP32	1	205
II-2	Development without using unused potential	Expansion of existing pumped storage power plant or new construction using existing facilities	JP39, SW01, PT102, PT103, AS101, IN101, LX101	7	18
		Increasing peak supply capacity through expansion using existing reservoir	JP36, LA101	2	26-63
		New construction of the reservoir and addition of pumping capability at the existing power plant using a multipurpose water supply system in the island region	PT101	1	0

Table 8. Characteristics of "Hidden Hydro" in Type II categories and corresponding cases

The majority of Type II-1 cases involve the utilization of e-flows from a dam or similar types of unused flows. Concerning this type of power generation, Appendix B summarizes the facilities used, the characteristics of the technology involved and the challenges in the development. Most of the "e-flows" plants are small-scale in capacity (1 MW or lower), constrained in location

conditions just downstream of the dam, and many types of turbine/generator and construction methods have been adopted to address those challenges.

There are also other development methods using spilled water or the water released for irrigation, unused water heads in facilities such as existing headrace channels or intake facilities in tributaries, or unused water heads in existing reregulating reservoirs. Different forms of development, such as expansion, new construction and redevelopment are implemented according to size considerations and site conditions.

The case of JP32 is a redevelopment project that made it possible to utilize unused water head in the existing power plant while reinforcing the aged intake dam. Although the existing power plant was downsized after the renewal, the combined output of the existing plant and a newly constructed power plant reached 204% of the pre-project level.

In the category of Type II-2, "development without using unused potential," there are cases involving the expansion of existing pumped storage power plants or new construction using existing facilities, which is the majority in this category. The cases in Europe were carried out in or after 2010 to meet the emerging needs in the market.

The case of PT101 involves the addition of pumping facilities to an existing power plant using a multipurpose water supply system in the Portuguese Territory of Madeira Island. The project was carried out to meet electric power demand by making effective use of limited water resources in the island region.

4.2.3 Type III: Operational improvement

Table 9 summarizes the characteristics of "Hidden Hydro" in the Type III development categories and corresponding case histories.

Type III-1, "optimized operation of electro-mechanical equipment," includes cases reducing the lower limit of discharge for power generation and increasing capacity factor by downsizing the turbine and generator according to the flow regime. In PT104, a method for plant operation safely reducing the lower limit of discharge for power generation was developed jointly by Portugal's EDP and GE, and the method was verified at existing plants. US02, JP108 and SW101 demonstrated a higher capacity factor by downsizing the turbine and generator, also shown in the Type I-2 category in Table 7.

In the category of Type III-2, "optimized reservoir/power plant operation," there are cases of the increase in power generation by diversion from another catchments such as JP111 and JP119 which increased total power production of power plants within the same river system by conveying greater amounts of water to the plants with higher-energy-conversion-factor; and JP112 which increased total power production of new and existing plants by installing reverse-pump turbine generator system capable of both pumping and power generation at an irrigation water facility and pumping up river water during the non-irrigation period to an intake reservoir of an existing power plant.

In the optimization of intake discharge management, JP113 developed a system automatically controlling the stopping and resumption of water intake in times of flooding in order to make the intake interruption period shorter and JP114 developed a system keeping the intake discharge

within the allowable range to reduce spills from the intake weir. Both projects helped increase power production.

In the systematic renewal/expansion projects considering the operation of cascade power plants, the case of FI01 is one of the R&U projects for six power plants on the Kemijoki River in Finland from 1996 to 2011, considering the operational relationship between the power plants with the aim of improving the operational efficiency as a whole.

In the optimization of power plant operation by improving dam inflow forecasting, JP120 has achieved advanced dam inflow forecasting and optimization of power plant operation by combining weather observation and forecasting technology, snow accumulation and melting models, optimization calculation methods, etc., and JP122 has succeeded in improving the accuracy of dam inflow forecasting during high run-off by using machine learning technology, enabling early restoration of reservoir storage by reducing spilled water from the dam. These technologies are expected to apply to many other sites in the future.

Тур	e of Development	Characteristics	Case Histories	Number of cases
III-1	Optimized operation of electro-mechanical	Expansion of flow range for power generation	FR01, US01, JP102, PT104, SW103	5
	equipment	Capacity factor improvement by downsizing of turbine/generator	US02, JP108, SW101	3
III-2	Optimized operation of	Improvement of operational efficiency of existing power plant by diversion from the other catchment	JP111, JP112, JP119, AU101	4
	reservoir/power	Optimization of intake discharge management	JP113, JP114	2
plant	Improvement of power plant operation by retrofitting headrace channel for conveying water from multiple rivers	JP101	1	
		Optimization of e-flows release using existing power generation facilities	PT201	1
		Systematic renewal/expansion considering the operation of cascade power plants	FI01	1
		Optimization of power plant operation by improving dam inflow forecasting	JP120, JP122	2

Table 9. Characteristics of "Hidden Hydro" in Type III categories and corresponding cases

4.2.4 Improvements of performance through the development of "Hidden Hydro"

As shown in Tables 7-9, the development of "Hidden Hydro" contributes to a wide range of performance improvements of existing hydropower plants, including increased output and power generation, improved equipment durability, improved reliability and flexibility in the power supply, and optimized power plant operations.

As an example of the quantitative performance improvements, the output increase rates for Type I and Type II cases are shown in Figure 5. The output increase rate is defined here as (output increase due to the project implementation) / (maximum output before the project implementation.) Figure 5 shows that the output increase rate was larger for Type II, which has

IEA Hydro Task 16: Subtask 2 Summary Report. 2024.

more options for development methods, than for Type I, particularly for small-scale hydropower plants with an output of 10 MW or less. Note that the figure does not include three cases of Type I, in which the water turbines and generators were downsized to improve the capacity factor, and one case of Type II, in which the output increase rate was extremely large (483%, NW01).

Most of the cases with increased output also increased power generation, except for the cases that expanded the pumped storage power plants. The expansion of pumped storage power plants contributed to the improvement of reliability and flexibility, such as securing the peak supply capacity. Even in the cases with no increase in output, power generation was increased due to the improvements in equipment durability and efficiency.

Type III cases contributed to the increased power generation and the improved efficiency through the optimization of power plant and reservoir operations.

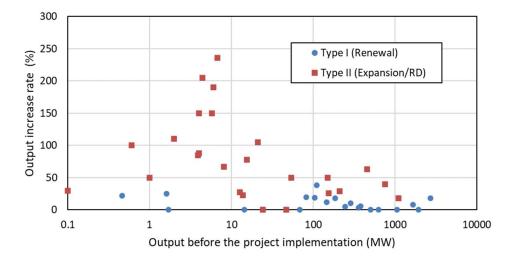


Figure 5. Output increase rate for Type I and Type II cases (RD=redevelopment. New construction projects in Type II are not included.)

4.3 Development of "Hidden Hydro": challenges and solutions

In general, there are challenges related to technology, economic efficiency, environment and regulations in hydropower development. The same is true for the development of "Hidden Hydro." From the collected case histories, specific examples of the solutions to these challenges are summarized in Tables 10 through 12.

4.3.1 Solutions to technical challenges

Solutions to the technological challenges can be divided into two categories: those related to enhancement and improvement of the performance of facilities, which is utilized in the

development of "Hidden Hydro," and those related to the design and construction of civil engineering facilities, as shown in Table 10.

Technological challenges related to the performance of facilities are basically solved through technological improvements and innovations, many of which correspond to the basic requirement B "advanced or improved methods" of "Hidden Hydro." Concerning electromechanical equipment, noticeable cases are improvements in the efficiency and durability of water turbine (JP19, BR01, FR01, etc.), introduction of new types of water turbine (JP102, JP115, FR101, etc.), addition of pumped storage function (AS101), variable speed turbine and generator (JP08), data monitoring system to expand the range of turbine and generator operation (PT104), automation of water intake control (JP113, JP114), and improved operational planning through more accurate dam inflow forecasts (JP120, JP122). Concerning civil engineering facilities, there has been the introduction of the steel-rubber hybrid gate (JP29), structural reinforcement of aged dams and the enlargement of flood discharge capacity (JP32), among others. Elemental technologies used to improve and enhance the performance of these facilities include CFD analysis and model test of water turbine and channel flows, monitoring and control of equipment using digital technologies, weather observation/forecasting system, and method for predicting dam inflows.

Challenges related to the design and construction of civil engineering facilities are often found in Type II cases including expansion, new construction and redevelopment in a variety of site conditions. Specifically, there are measures to prevent construction work from affecting the operation of existing power plant (NW01, JP109, SW01, PT102, etc.), controlling river flow during construction (NW05, NW08), tunnel and underground cavity excavation technology (JP27, JP39), construction technology at sites with severe topographical and ground constraints (JP103, VU101, SW104, etc.), and drilling of concrete dam body (JP121, JP36, LA101). In these design and construction works, it is important to optimize them while considering safety, economic efficiency, and environmental impacts.

Specific S	olutions to Technical Challenges	Case Histories
Enhancement and	Improving efficiency/durability of water turbine	JP19, BR01, FR01, etc.
improvement of	New types of water turbine	JP102, JP115, FR101, etc.
performance of facilities	Adding pumped storage function	AS101
	Variable speed turbine/generator at PSH plant	JP08
	Data monitoring system for range expansion of turbine/generator	PT104
	Automatic water intake control	JP113, JP114
	Improving power plant operation by more accurate dam inflow forecasts	JP120, JP122
	Steel-rubber hybrid gate	JP29
	Structural reinforcement of aged dam and enlargement of flood discharge capacity	JP32
Design and construction of civil engineering	Preventing construction work from affecting existing power plant operation	NW01, JP109, SW01, PT102
facilities	Controlling river flow during construction	NW05, NW08
	Excavating tunnel and underground cavity	JP27, JP39
	Construction under severe topographical and ground constraints	JP103, VU101, SW104, etc.
	Drilling concrete dam body	JP121, JP36, LA101

Table 10. Specific solutions to technical challenges in case histories

Technical challenges of power generation using environmental flows at existing dams and power plants are analysed in Appendix B. Major challenges include simplification of facilities to reduce costs, utilization of existing facilities and construction at locations with severe topographical constraints such as the base of dams.

4.3.2 Solutions to economic challenges

In order to improve the economic efficiency of the project, the main challenges are reducing development costs, minimizing the scale of construction, shortening the construction period, and improving the efficiency of maintenance and management in operation. Solutions to these challenges can be classified into technological methods and policy support, as shown in Table 11.

Technological methods include the use of existing facilities and technological innovations. Specifically, three are examples utilizing existing water intake facilities, headrace channel and penstock (JP02, JP07, JP27, JP41), reducing repair interval by improving the durability of equipment (JP19), optimizing renewal options (JP24), and improving the capacity factor by downsizing equipment (JP115).

For existing facilities, it is possible to reduce the scale of construction work by evaluating their soundness and maximizing their utilization. In improving the durability of equipment, CFD analysis, model experiments and field tests of water turbine and channel flows have been conducted frequently. With future advances in computer performance and CFD analysis technology, costs will be further reduced if experiments and tests can be reduced.

Optimization of renovation options at early design stages also contributes to the project's cost reduction. The RENOVHydro project, although not included in the case histories, has demonstrated a systematic assessment methodology using a hydropower plant simulation model developed by EPFL to identify the most cost-effective civil and hydro-electrical options (Landry, C. et al., 2018).

Specific	Solutions to Economic Challenges	Case Histories
Technological Method	Utilizing existing civil engineering facilities Reducing repair interval by improving the durability of water turbine	JP02, JP07, JP27, JP41 JP19
	Optimizing renewal options Improving capacity factor by downsizing equipment	JP24 JP115
Policy Support	Subsidies	US01-04, JP02, JP07, JP32, JP41, JP102, JP121
	Electricity certificates	NW01, NW03, NW07
	FIT, RPS	JP01, JP102, JP104-106, JP203, JP207, JP209-212, etc.

Table 11. Specific solutions to economic challenges in case histories

Policy support includes subsidies, electricity certificates, RPS (Renewables Portfolio Standard), and FIT (Feed-in-Tariff). Four U.S. examples (US01-US04) were funded by the U.S. Department of Energy under The American Recovery & Reinvestment Act of 2009. Six Japanese projects (JP02, JP07, JP32, JP41, JP102, and JP121) received national funding to support medium and small-scale hydropower development. Three Norwegian cases (NW01, NW03, NW07) have used the Norwegian-Swedish electricity certificate market. In addition, many Japanese examples of environmental flows power generation have used the FIT system introduced in 2012.

4.3.3 Solutions to environmental challenges

Environmental impacts of hydropower development generally include impacts on the natural environment, such as flow regime, water quality, reservoir sedimentation and terrestrial and aquatic ecosystems, as well as impacts on the social environment, such as water use, landscape and livelihoods of residents in the affected area. In the renewal or redevelopment of existing power plants, these additional environmental impacts have to be assessed and minimized. Most of these additional environmental impacts are relatively small compared to those of new greenfield projects and are not significant barriers to the development of "Hidden Hydro."

As shown in Table 12, major mitigation measures in the collected cases include release of river maintenance/environmental flows (NW03, JP117, JP121, SW104), fish migration and habitat conservation (JP10, NW01, US01, US04, SW102), bird conservation (JP36, JP107, JP116) and landscape conservation (JP32, NW01, JP117, SW105). Effective mitigation measures have been developed and demonstrated for a wide variety of environmental impacts. In the US04 case, an innovative upstream fish passage system has been developed to collect migrating fish at the base of a 72m-high dam and transport them upstream. Note that streamlining the environmental consultation process may be necessary in some cases (JP111, SW103) to avoid delays in development. This is also true for consultations related to non-environmental regulations such as water diversion and land use.

Specific Solu	Case Histories	
Natural Environment	Releasing environmental flows	NW03, JP117, JP121, SW104
	Preserving fish migration and habitat	JP10, NW01, US01, SW102
	Preserving birds	JP36, JP107, JP116
Social Environment	Preserving landscape	JP32, NW01, JP117, SW105
	Streamlining environmental consultations	JP111, SW103

Table 12. Specific solutions to environmental challenges in case histories

5 SUMMARY AND CONCLUSIONS

In this study, we defined the methods to increase output and power generation as well as reliability and flexibility of existing hydropower plants through modernization using unused potential and/or advanced technologies as "Hidden and Untapped Hydropower Opportunities" (Hidden Hydro), and collected 113 case histories globally.

"Hidden Hydro" of existing hydropower plants is important for hydropower development with lower environmental impacts and development costs than alternative greenfield projects, particularly in countries where hydropower development has advanced and the number of suitable sites for the new development has decreased. This study systematically organized methods for performance improvement by project type and "Hidden Hydro" requirements, and compiled data and findings useful for efficient future hydropower development. A summary of the main findings is presented in the "Executive Summary." Detailed information on the case histories is available in the Appendices A and B.

There are technological and economic challenges in the development of "Hidden Hydro." In order to resolve these issues and develop "Hidden Hydro" more efficiently, technological innovation and policy support will continue to be important.

6 **REFERENCES**

IEA TCP on Hydropower, Annex 16 Hidden Hydro Opportunities, *www.ieahydro.org/work-programme/annex-xvi-hidden-hydro*.

IEA TCP on Hydropower (2016), Renewal & Upgrading of Hydropower Plants, Annex 11 Summary Report.

IEA TCP on Hydropower (2021), Maintenance Works and Decision-making for Hydropower Facilities, Annex 15 Report.

IEA (2021), Hydropower Special Market Report, Analysis and forecast to 2030.

Landry, C. et al. (2018), Renovation of hydraulic power plant: how to select the best technical options? Hydro 2018, Gdansk, Poland.

APPENDIX A SUMMARY OF CASE HISTORY DATA

This data summary for each case history of "Hidden and Untapped Hydropower Opportunities" includes key information about the project, improvement of performance, main challenges, and characteristics of "Hidden Hydro" development, with the exception of environmental flows power generation, the data of which are summarized in Appendix B.

Definitions and descriptions of the term in the summary

Type of the project:

"Renewal" includes refurbishment, renewal/upgrading, replacement, and retrofitting of existing plant.

"Expansion" is defined as the addition of new power generation units and/or civil structures to existing plants.

"New construction" is defined as the construction of a new power plant using part of existing facilities.

"Redevelopment" includes the construction of a new power plant by renewing or abolishing existing plants, using part of existing facilities.

"Change of power plant operation" includes operations of the power plant and/or water intake system.

Classification of development type

1	Renewal/upgrading of existing facilities
I-1	Renewal of electro-mechanical equipment without changing intake discharge/hydraulic head
I-2	Renewal of electro-mechanical equipment changing intake discharge/hydraulic head
I-3	Renewal of electro-mechanical equipment adding new functions
I-4	Renewal of civil engineering facilities
Ш	Expansion/new construction/redevelopment
II-1	Development using unused potential
II-2	Development without using unused potential
III	Operational improvement
III-1	Optimized operation of electro-mechanical equipment
III-2	Optimized operation of reservoir/power plant

"Hidden Hydro" requirements

А	Effective use of water resources including unused or overlooked potential in existing facilities
В	Introduction of advanced or improved methodologies to maximize plant performance
С	Improvement of reliability and flexibility to meet market needs

IEA Hydro Task 16: Subtask 2 Summary Report. 2024.

Code	Name of Power Plant	Country	Project Type	Page
CH01	Gezhouba	China	Renewal	A.4
IN101	Srisailam Left Bank	India	New construction	A.6
JP02	Kikka	Japan	Redevelopment	A.8
JP07	Shin-Kuronagi No.2	Japan	New construction	A.10
JP08	Okutataragi	Japan	Renewal	A.12
JP10	Shin-Takatsuo	Japan	Redevelopment	A.14
JP19	Himekawa No.2	Japan	Renewal	A.16
JP24	Tagokura	Japan	Renewal	A.18
JP27	Shin-Onagatani No.1	Japan	Redevelopment	A.20
JP29	Saikawa	Japan	Renewal	A.22
JP32	Shin-Taishakugawa	Japan	Redevelopment	A.24
JP36	Okutadami/Otori	Japan	Expansion	A.27
JP39	Okukiyotsu No.2	Japan	New construction	A.30
JP41	Hanakawa	Japan	Redevelopment	A.32
JP101	Ooigawa	Japan	Renewal	A.34
JP102	Kawahira No.2	Japan	New construction	A.36
JP103	Yukomanbetsu	Japan	New construction	A.38
JP104	Konokidani	Japan	New construction	A.40
JP105	Kitanomata No.2	Japan	New construction	A.42
JP106	Okususobana No.2	Japan	New construction	A.44
JP107	Shin-Iwamatsu	Japan	Redevelopment	A.46
JP108	Shimoyama	Japan	Renewal	A.48
JP109	Shin-Kousa	Japan	Redevelopment	A.50
JP110	Yugashima	Japan	Renewal	A.52
JP111	Sakaigawa	Japan	Renewal	A.54
JP112	Shumarinai	Japan	New construction	A.56
JP113	Shirotagawa	Japan	Operation	A.58
JP114	Nakazato	Japan	Operation	A.60
JP115	Kaminojiri No.2	Japan	New construction	A.62
JP116	Nakatsugawa No.2	Japan	New construction	A.64
JP117	Yukawa	Japan	Redevelopment	A.66
JP118	Yabukami No.2	Japan	New construction	A.68
JP119	Azumi	Japan	Renewal	A.70
JP120	Power stations in Kurobe River basin	Japan	Operation	A.72
JP121	Akiba No.3	Japan	New construction	A.74
JP122	Higashimachi	Japan	Operation	A.76
LA101	Nam Ngum 1	Laos	Expansion	A.78
PH101	Maris Main Canal 1	Philippines	New construction	A.80
VN101	Thac Mo	Vietnam	Expansion	A.82

List of data summary for each case history

Code	Name of Power Plant	Country	Project Type	Page
AS101	Obervermuntwerk II	Austria	New construction	A.84
AU01	Poatina	Australia	Renewal	A.86
AU102	Tods Corner	Australia	New construction	A.88
BR01	Estreito	Brazil	Renewal	A.90
CA101	London Street	Canada	Expansion	A.92
CO101	Salvajina	Colombia	Renewal	A.94
FI01	Pirttikoski	Finland	Renewal	A.96
FR01	Sisteron	France	Renewal	A.98
FR101	Mathay	France	Expansion	A.100
IC101	Búrfell	Iceland	Renewal	A.102
IC102	Búrfell II	Iceland	New construction	A.104
LX101	Vianden	Luxembourg	Expansion	A.106
MW101	Tedzdani IV	Malawi	New construction	A.108
NW01	Embretsfoss IV	Norway	Redevelopment	A.110
NW02	Hemsil II	Norway	Renewal	A.112
NW03	Hemsil III	Norway	New construction	A.114
NW04	Hol I	Norway	Renewal	A.116
NW05	Hunsfos East	Norway	Redevelopment	A.118
NW06	Iveland II	Norway	New construction	A.120
NW07	Rånåsfoss III	Norway	Redevelopment	A.122
NW08	Kongsvinger	Norway	Expansion	A.124
NZ101	Whakamaru	New Zealand	Renewal	A.126
PT101	Socorridos	Portugal	Redevelopment	A.128
PT102	Salamonde II	Portugal	New construction	A.130
PT103	Frades II	Portugal	New construction	A.132
PT104	Valeira	Portugal	Operation	A.134
SW01	Veytaux II	Switzerland	New construction	A.136
SW101	Profray	Switzerland	Renewal	A.138
SW102	Schils	Switzerland	Redevelopment	A.140
SW103	Milan	Switzerland	Expansion	A.142
SW104	Glarey	Switzerland	Renewal	A.144
SW105	Farettes	Switzerland	Renewal	A.146
US01	Abiquiu	USA	Expansion	A.148
US02	Boulder Canyon	USA	Renewal	A.150
US03	Cheoah	USA	Renewal	A.152
US101	Ludington	USA	Renewal	A.154
US102	Alabama (3plants)	USA	Renewal	A.156
VU101	Sarakata River	Vanuatu	Expansion	A.158
ZWE101	Kariba South	Zimbabwe	Expansion	A.160

List of data summary for each case history

Data summary for each case history

Project code	CH01
Name of the project	Renewal of Gezhouba Power Station
Location/country of the	Yichang City, Hubei Province, China
project	
Implementing body of the	China Yangtze Power Co., Ltd.
project	
Implementing period	2005 – 2022
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Gezhouba Power Station (Erjiang PS and Dajiang PS)
Name of river	Yangtze River
Type of power plant	Dam type
Year of commission	1981
Maximum output (MW)	2715MW (Erjiang: 129MW/unit x 7 units, Dajiang: 129MW/unit
	x 14 units)
Maximum discharge	825/unit
(m3/s)	
Effective head (m)	18.6
Annual power	15,700
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Gezhouba Power Station (Erjiang PS and Dajiang PS)
Name of river	Yangtze River
Type of power plant	Dam type
Year of commission	2022
Maximum output (MW)	3213MW (Erjiang: 153MW/unit x 7 units, Dajiang: 153MW/unit
	x 14 units)
Maximum discharge	Erjiang: 950.95/unit, Dajiang: 923.39/unit
(m3/s)	
Effective head (m)	18.6 16.400 (actimated)
Annual power production (GWh)	16,400 (estimated)
Overview of the project	Gezhouba Power Station on the Yangtze River has been
Overview of the project	operating for more than 30 years, and some parts of the units
	had serious aging phenomena and hidden safety hazards,
	which affected safe and stable operation. Therefore, China
	Yangtze Power Co., Ltd. decided to renew and upgrade
	129MW units. Targets of the renewal were turbine runners,
	generator stator cores, stators and rotor winding bars. The
	renewal was expected to increase maximum output and
	improve generation efficiency and cavitation erosion
	resistance.
Improvement of	
performance	

Maximum output was increased from 129MW/unit to
153MW/unit by using the unused potential.
An increase in annual power production by 700GWh was
expected due to the increase in output.
N/A
N/A
N/A
N/A
N/A
N/A
N/A
I-2 Renewal of electro-mechanical equipment changing intake
discharge/hydraulic head
Effective utilization of unused potential in the river. Existing
generation units were renewed and upgraded by increasing
maximum discharge.
N/A
N/A
N/A
[1] IEA Hydro (2016) Annex 11, Case History Ch.01_
Gezhouba
https://www.ieahydro.org/media/5fb06b0d/
Vol2_Case_History_English(409-598).pdf

Project code	IN101
Name of the project	New construction of Srisailam Left Bank Pumped Storage
	Power Station
Location/country of the	Andrha Pradesh (AP), India
project	
Implementing body of the	AP State Electric Power Board
project	
Implementing period	1988 – 2003
Type of the project	New construction
Specifications (before the	
project)	
Name of power plant	Srisailam Power Station
Name of river	Krishna River
Type of power plant	Dam and waterway type
Year of commission	1987
Maximum output (MW)	770
Maximum discharge	N/A
(m3/s)	
Effective head (m)	N/A
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Srisailam Power Station
project)	are the same as those before the project. Srisailam Left Bank
	Power Station is newly constructed to expand the existing
	power station.
Name of power plant	Srisailam Left Bank Power Station (mix-type pumped storage)
Name of river	Krishna River
Type of power plant	Dam and waterway type
Year of commission	2003
Maximum output (MW)	990
Maximum discharge	N/A
(m3/s)	
Effective head (m)	N/A
Annual power	1465
production (GWh)	Scientian Dewer Station with 7 write of 440MM has been
Overview of the project	Srisailam Power Station with 7 units of 110MW has been
	operating since 1987 on the Krishna River in Andrha Pradesh State, India, but there was an overflow from the dam. There is
	Nagarjugasagar Reservoir located downstream of Srisailam
	Power Station and it was planned to construct a mix-type
	pumped storage power station using a hydraulic head
	between Srisailan upper reservoir and Nagarjugasagar lower
	reservoir. Through this mix-type pumped storage power
	development, the river flow was effectively utilized. The peak-
	power supply from the new pumped storage station meets the
	increasing power demand in Andrha Pradesh State.
Improvement of	
performance	
Increase in output	Maximum output was increased by the new construction of a
	mix-type pumped storage power station.

Increase in power	The increased power output by pumped storage generation
production	and the self-generation using dam inflow increased total
	annual power production.
Reliability/flexibility	A new mix-type pumped storage power station improved the
	reliability of the power supply by meeting increasing peak
	electricity demand.
Others	N/A
Challenges in the project	
Technology	N/A
Cost	The project was funded by ODA loans from the Japan
	International Cooperation Agency.
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	Effective utilization of overflow discharge and hydraulic head
Effective use of water	at existing dam
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	Increased peak-power supply by the new construction of a
reliability/flexibility	mix-type pumped storage power station improved the
corresponding to	reliability and flexibility of the power supply.
market needs	
Others	N/A
References	[1] India Srisailam Left Bank Power Station Project - JICA
	https://www.jica.go.jp/english/our work/evaluation/
	oda loan/post/2006/pdf/project35 full.pdf

Project code	JP02
Name of the project	Redevelopment of Kikka Power Station
Location/country of the	Kumamoto Prefecture, Japan
project	
Implementing body of the	Kumamoto Prefecture, Public Enterprise Bureau
project	
Implementing period	1998 – 2000
Type of the project	Redevelopment
Specifications (before the	
project)	
Name of power plant	Fukaze Power Station
Name of river	Uchidagawa River and Kuwazurugawa River
Type of power plant	Waterway type
Year of commission	1956
Maximum output (MW)	0.46
Maximum discharge	1.1
(m3/s)	
Effective head (m)	62
Annual power	2.6
production (GWh)	
Specifications (after the	Note: The existing Fukaze Power Station was renewed and
project)	upgraded to Kikka Power Station.
Name of power plant	Kikka Power Station
Name of river	Uchidagawa River and Kuwazurugawa River
Type of power plant	Waterway type
Year of commission	2000
Maximum output (MW)	0.56
Maximum discharge	1.1
(m3/s)	
Effective head (m)	63.1
Annual power	N/A
production (GWh)	
Overview of the project	Kikka Power Station is the renewal project of Fukase Power
	Station, which was built in Kikka town, Kumamoto Prefecture. Fukase Power Staion was decided to implement renewal &
	upgrade works because the power facilities were too old. The
	developer was also changed from a local business union to
	the prefecture enterprise bureau. Renewal & upgrade works
	consist of the effective utilization of the existing waterway, the
	adoption of the latest model of turbine/generator and the
	change of installation position of the turbine center. After the
	project, maximum output and power production were
	increased by the increase of effective head.
Improvement of	
performance	
Increase in output	Maximum output was increased from 460 kW to 560 kW.
Increase in power	Power production was increased by the increase in output.
production	
Reliability/flexibility	N/A
Others	N/A

Challenges in the project	
Technology	A survey into the soundness of the waterway was conducted before renewal works and it was found that the existing old waterway for Fukase Power Station was available for work with periodic inspection and repair.
Cost	Considering the economic efficiency of the construction of Kikka Power Station, the existing waterway was effectively utilized and a public subsidiary system for hydropower development was utilized.
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	I-2 Renewal of electro-mechanical equipment changing intake
development type	discharge/hydraulic head
Requirement A:	Effective use of unused potential by increasing effective head
Effective use of water resources	
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	 [1] IEA Hydro (2016) Annex 11, Case History Jp.02: Kikka <u>https://www.ieahydro.org/media/860db877/</u> Vol2_Case_History_English(207-408).pdf [2] Kumamoto prefecture Overview https://www.pref.kumamoto.jp/uploaded/attachment/50286.pdf

Project code	JP07
Name of the project	New construction of Shin-Kuronagi No. 2 Power Station
Location/country of the	Toyama Prefecture, Japan
project	
Implementing body of the	Kansai Electric Power Co., Inc.
project	
Implementing period	2012 – 2013
Type of the project	New construction
Specifications (before the	
project)	
Name of power plant	Kuronagi No.2 Power Station
Name of river	Kuronagi River
Type of power plant	Waterway type
Year of commission	1947
Maximum output (MW)	7.6
Maximum discharge	6.2
(m3/s)	
Effective head (m)	152.55
Annual power	58.6
production (GWh)	
Specifications (after the	Note: Specifications of the existing Kuronagi No.2 Power
project)	Station are the same as those before the project.
Name of power plant	Shin-Kuronagi No. 2 Power Station
Name of river	Kuronagi River
Type of power plant	Waterway type
Year of commission	2013
Maximum output (MW)	1.9
Maximum discharge	1.7
(m3/s)	
Effective head (m)	142.13
Annual power	8.6
production (GWh)	
Overview of the project	Shin-Kuronagi No.2 Power Station with a maximum output of 1.9MW and annual power production of 8.6GWh was newly constructed on the upstream site adjacent to the existing Kuronagi No. 2 Power Station. In this project, existing power facilities such as an intake weir, headrace tunnel, head tank and penstock were effectively utilized and the surplus waterflow capacity of the waterway (by partial enlargement of tunnel section) made it possible to increase water discharge from 6.2 to 7.9 m3/s. Because the existing facilities were utilized, construction cost could be reduced to about 40% compared to the new construction of a hydropower station of the same scale and type.
Improvement of	
performance	
Increase in output	Maximum output was increased by 1.9MW.
Increase in power production	Annual power production was increased by 8.6GWh.
Reliability/flexibility	N/A

Others	N/A
Challenges in the project	
Technology	N/A
Cost	
COSI	Maximum discharge was examined on an appropriate scale from an economical viewpoint. In addition, because the
	existing power facilities were utilized, construction costs could
	be reduced to about 40% compared to the case of new
	construction of hydropower stations of the same scale and
	type, and a public subsidiary system for hydropower
	development was utilized.
Environmental	N/A
conservation	
	N/A
Legal restriction	
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	Utilization of existing power facilities and effective utilization of
Effective use of water	the surplus waterflow capacity of the waterway made it
resources	possible to reduce construction cost of the project greatly.
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Jp.07_Shin-
	Kuronagi
	https://www.ieahydro.org/media/5fb06b0d/
	Vol2 Case History English(1-206).pdf

Project code	JP08
Name of the project	Renewal of Okutataragi Pumped Storage Power Station
Location/country of the	Hyogo Prefecture, Japan
project	Tyogo T Telecidie, Japan
Implementing body of the	Kansai Electric Power Co., Inc.
project	
Implementing period	2008 – 2019
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Okutataragi Pumped Storage Power Station
Name of river	Upper Reservoir : Ichi River
	Lower Reservoir : Maruyama River
Type of power plant	Recirculating pumped storage
Year of commission	1998
Maximum output (MW)	generation 303MW, pumping 320MW (Unit No.1-2)
Maximum discharge	94
(m3/s)	
Effective head (m)	383.4
Annual power	N/A
production (GWh)	
Specifications (after the	Note: The following specifications are the same as those
project)	before the project. Unit No.1 and No.2 were upgraded from
	constant speed type to variable speed type.
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	2019
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	-
production (GWh)	Eroquency control of the electric newer system in late right
Overview of the project	Frequency control of the electric power system in late night hours has been accomplished by variable speed generator
	motors of pumped storage power stations and fossil fuel-fired
	power units, which have AFC (Automatic Frequency Control).
	In order to secure the frequency control functions, existing
	No.1 & 2 units of the Okutataragi Pumped Storage Power
	Station were upgraded from constant speed type to variable
	speed type by the renewal project.
Improvement of	
performance	
Increase in output	No
Increase in power	No
production	
Reliability/flexibility	The frequency control function was improved, which
	contributed to the improvement of reliability and flexibility of

	the existing pumped storage power station by upgrading the
	existing constant speed pumped storage system to variable
	speed system.
Others	N/A
Challenges in the project	
Technology	- Modification to variable speed system by using the existing
	facilities
	- Runner with splitter vanes
	- Securing the widening space by excavation of the existing
	tunnel
	- Rationalization of design for rotor coil insulation in terms of
	high voltage and high mechanical/thermal strength
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	I-3 Renewal of electro-mechanical equipment adding new
development type	functions
Requirement A:	N/A
Effective use of water	
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	The frequency control function was improved by upgrading
reliability/flexibility	the existing constant speed pumped storage system to
corresponding to	variable speed system. The reliability and flexibility of the
market needs	existing pumped storage power station was improved.
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History
	Jp.08_Okutataragi https://www.ieahydro.org/media/5fb06b0d/
	Vol2_Case_History_English(1-206).pdf

Project code	JP10
Name of the project	Redevelopment of Shin-Takatsuo Power Station
Location/country of the	Wakayama Prefecture, Japan
project	Tranayama Protoctaro, oapan
Implementing body of the	Kansai Electric Power Co., Inc.
project	
Implementing period	1997 – 1999
Type of the project	Redevelopment
Specifications (before the	
project)	
Name of power plant	Takatsuo Power Station
Name of river	Hidaka River
Type of power plant	Waterway type
Year of commission	1918
Maximum output (MW)	5.8
Maximum discharge	14.4
(m3/s)	
Effective head (m)	N/A
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Shin-Takatsuo Power Station
Name of river	Hidaka River
Type of power plant	waterway type
Year of commission	1999
Maximum output (MW)	14.5
Maximum discharge	32
(m3/s)	
Effective head (m)	51
Annual power	N/A
production (GWh)	
Overview of the project	Shin-Takatsuo Power Station of 14.5MW was constructed by
	increasing maximum water discharge and utilizing a part of
	the existing facilities (intake structures, headrace, etc.) along
	with the abolition of the aged Takatsuo Power Station of
	5.8MW. For fish protection, the facility to prevent sweetfish
	from entering the water intake was installed.
Improvement of	
performance	Maximum output was increased from 5.8MW to 14.5MW by
Increase in output	increasing maximum discharge.
Increase in power	Annual power production was increased by the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	N/A
Cost	N/A
0051	

Environmental conservation	Shin-Takatsuo Power Station is located midstream of the Hidaka River and is one of the most famous sweetfish habitats in Japan. Therefore, the fish way was installed at the intake dam to help sweetfish upstream migration. However, when sweetfish migrates downstream to the river mouth so as to lay eggs, they often enter the water intake of the power station and pass through the turbine, resulting in many fish deaths. For this reason, along with the construction work of Shin-Takatsuo Power Station, the facility to prevent sweetfish from entering the water intake was installed.
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-1 Development using unused potential
Requirement A: Effective use of water resources	Effective utilization of unused potential by increasing maximum discharge
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Jp.10_Shin- Takatsuo <u>https://www.ieahydro.org/media/5fb06b0d/</u> Vol2_Case_History_English(1-206).pdf

Project code	JP19
Name of the project	Renewal of Himekawa No.2 Power Station
Location/country of the	Nagano Prefecture, Japan
project	
Implementing body of the	Chubu Electric Power Co., Inc.
project	
Implementing period	2005 – 2010
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Himekawa No.2 Power Station
Name of river	Hime River, Kusu River, Matsu valley, Oyasawa River,
	Kurosawa River
Type of power plant	Waterway type
Year of commission	1935
Maximum output (MW)	14.4
Maximum discharge	10.3
(m3/s)	
Effective head (m)	164.55
Annual power	N/A
production (GWh)	
Specifications (after the	Note: The following specifications are the same as those
project)	before the project. The guide vane of the water turbine was
projecty	upgraded in the project.
Name of power plant	-
Name of river	-
Type of power plant	
Year of commission	2010
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	-
production (GWh)	
Overview of the project	At Himekawa No. 2 Power Station, turbine parts such as
	runners and guide vanes were significantly worn out due to
	the sediment contained in water, and it was necessary to
	repair turbine parts at a shorter cycle (4 to 6 years) than other
	power stations. In order to deal with this problem, CFD
	analysis was used to analyze the flow phenomenon of water
	including sediment in the turbine (Solid-liquid two-phase flow
	analysis), and a guide vane shape was developed to reduce
	wear. The deterioration of turbine performance was reduced,
	and a repair cycle was extended from the current 6 to 12
	years. Repair costs and loss of power production caused by
	power stoppage were reduced.
Improvement of	
performance	Ne
Increase in output	No

Increase in power	Loss of power production caused by power stoppage was
production	decreased by shortening the repair interval of the turbine.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	CFD for solid-liquid two-phase flow was used to analyze the
	flow phenomenon of water, including sediment in the turbine
	and the guide vane shape reducing sediment wear was
	developed.
Cost	Renewal works extended the maintenance/repair cycle, and
	repair costs and loss of power production were reduced.
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	I-1 Renewal of electro-mechanical equipment without
development type	changing intake discharge/hydraulic head
Requirement A:	N/A
Effective use of water	
resources	
B: Improved and/or	Increase in power production due to the reduction of sand
advanced	abrasion by CFD analysis for solid-liquid two-phase flow,
methodologies	which shortens the downtime by inspection/maintenance
	leading to a longer operation time.
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History
	Jp.19_Himekawa#2
	https://www.ieahydro.org/media/5fb06b0d/
	Vol2_Case_History_English(1-206).pdf

Project code	JP24
Name of the project	Renewal of Tagokura Power Station
Location/country of the	Fukushima Prefecture, Japan
project	
Implementing body of the	Electric Power Development Co., Ltd.
project	
Implementing period	2004 – 2012
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Tagokura Power Station
Name of river	Tadami River
Type of power plant	Dam type
Year of commission	1961
Maximum output (MW)	380
Maximum discharge	431.2
(m3/s)	
Effective head (m)	105
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Tagokura Power Station
Name of river	Tadami River
Type of power plant	Dam type
Year of commission	2012
Maximum output (MW)	400
Maximum discharge	420
(m3/s)	
Effective head (m)	106.8
Annual power	N/A
production (GWh)	
Overview of the project	Renewal works were conducted in Tagokura Power Station
	from 2004 to 2012 by refurbishing 4 units one by one, and the maximum output was increased to 400MW. Firstly, the normal head was reviewed based on the examination of the actual operation results (dam water level, power discharge, power output) for 1998 to 2001, and the health of the equipment was diagnosed. The removal of buried parts was minimized for renewal work. Renewal works were conducted through an optimum design of the target parts of renewal by CFD analysis, and this contributed to the improvement of the shape design of the speed ring and runner vane. Furthermore, the optimization of the specific speed of the turbine made it possible to increase rotation speed by one rank and improve maximum efficiency and partial load efficiency of the equipment. Finally, the maximum output was increased by 20MW.
Improvement of	
performance	

Increase in output	Maximum output was increased by 20MW.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	Before the renewal works, equipment health was diagnosed,
	and the removal of buried parts was minimized in the concrete
	surrounding the turbine. The optimum turbine design was
	performed using CFD, and the rotation speed of the turbine
	was increased to improve equipment efficiency.
Cost	A comparison of the economic efficiency of the partial
	refurbishment of aged equipment with that of the whole
	refurbishment confirmed that the whole refurbishment was
	more economical.
Environmental	N/A
conservation	
Legal restriction Others	N/A
	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	I-1 Renewal of electro-mechanical equipment without
development type	changing intake discharge/hydraulic head
Requirement A:	N/A
Effective use of water	
resources	
B: Improved and/or	Not only the turbine runner but also the casing, stay vanes,
advanced	guide vanes, and draft tube were improved in performance by
methodologies	CFD. Furthermore, maximum efficiency and partial load
	efficiency were improved by increasing the rotation speed.
	Those contributed to the increase in maximum output and
	power production. Compared with the conventional way of
	renewal, the project was innovative in terms of cost reduction
	and minimal impact on the operation of existing units.
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Jp.24_Tagokura
	https://www.ieahydro.org/media/5fb06b0d/ Vol2 Case History English(1-206).pdf

Project code	JP27
Name of the project	Redevelopment of Shin-Onagatani No.1 Power Station
Location/country of the	Toyama Prefecture, Japan
project	··· ·
Implementing body of the	Toyama Bureau of Enterprise
project	
Implementing period	1997 – 2001
Type of the project	Redevelopment
Specifications (before the	
project)	
Name of power plant	Onagatani No.1 Power Station
Name of river	Ida River
Type of power plant	Waterway type
Year of commission	1955
Maximum output (MW)	4
Maximum discharge	3.25
(m3/s)	
Effective head (m)	146.61
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Shin-Onagatani No.1 Power Station
Name of river	Ida River
Type of power plant	Waterway type
Year of commission	2001
Maximum output (MW)	7.5
Maximum discharge	6
(m3/s)	
Effective head (m)	152
Annual power	N/A
production (GWh)	
Overview of the project	Onagatani No.1 Power Station was a run-of-river hydropower station with a maximum output of 4MW developed by Toyama Prefecture in 1955. Forty years have passed since the start of the operation, and facilities such as the headrace tunnel have deteriorated significantly, and redevelopment was conducted. Maximum discharge was changed from 3.25m3/s to 6.0m3/s, a 60-day flow rate, which was the cheapest construction cost per kWh and maximum output was increased from 4MW to 7.5MW. The intake weir was shifted upstream of the existing weir, and most of the power facilities were newly constructed. Existing penstock was used for the spillway tube to reduce construction costs.
Improvement of	
performance	An inteke weir was constructed upstroom of the evicting weir
Increase in output	An intake weir was constructed upstream of the existing weir to increase the water head and maximum discharge. The maximum output was increased.

Increase in power production	Power production was increased by the increase in output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	A new method of TBM with integrated excavation and lining was adopted for the small-section tunnel construction, shortening the construction period by approximately 13% compared to the conventional method.
Cost	A new head tank was constructed next to the existing head tank and the existing penstock was used as a new spillway tube to reduce construction costs.
Environmental conservation	N/A
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-1 Development using unused potential
Requirement A: Effective use of water resources	Effective utilization of the unused potential. The increase in effective head and maximum discharge increased maximum output.
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Jp.27_Shin- Onagatani #1 <u>https://www.ieahydro.org/media/5fb06b0d/</u> Vol2_Case_History_English(207-408).pdf

Project code	JP29
Name of the project	Renewal of Saikawa Power Station
Location/country of the	Nagano Prefecture, Japan
project	Nagano Freiecture, Japan
Implementing body of the	Chubu Electric Power Co., Inc.
project	
Implementing period	2000 – 2003
Type of the project	Refurbishment
Specifications (before the	Reluipishinent
project)	
Name of power plant	Saikawa Power Station
Name of river	Saikawa Power Station
Type of power plant	waterway type
Year of commission	1923
Maximum output (MW)	1.7
Maximum discharge	10.71
(m3/s)	10.00
Effective head (m)	19.06
Annual power	N/A
production (GWh)	
Specifications (after the	Note: The following specifications are the same as those
project)	before the project. The intake dam was refurbished in the
	project.
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	2003
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	
production (GWh)	Peters the repovetion, the inteller weir of California Davier
Overview of the project	Before the renovation, the intake weir of Saikawa Power
	Station had a fixed weir of gabion construction and an aged flushing gate. Since the discharge capacity of the flushing
	gate was small, many gabions were lost by the overflow at the
	weir section by floods. Consequently, a portion of the weir and
	steel gate were removed, and a large-scale steel flap gate
	with rubber bladders (SR dam) was installed. As a result, the
	loss of power production during repairing time for gabion weir
	and the expenses for repairing the lost gabion were reduced.
Improvement of	
performance	
Increase in output	No
Increase in power	Loss of power production during repairing time for the gabion
production	weir and the expenses for repairing the lost gabion were
	reduced.
Reliability/flexibility	N/A
Others	N/A

Challenges in the project	
Technology	SR dam can change weir height according to the river flow and keep water intake for the power operation. This is an advantage over the rubber dam.
Cost	N/A
Environmental conservation	N/A
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	I-4 Renewal of civil engineering facilities
development type	
Requirement A:	N/A
Effective use of water	
resources	
B: Improved and/or advanced methodologies	Renovation from the existing gabion weir to the SR dam made it possible to reduce the loss of power production during repairing time for the lost gabion by floods.
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Jp.29_Saikawa https://www.ieahydro.org/media/5fb06b0d/ Vol2_Case_History_English(207-408).pdf

Project code	JP32
Name of the project	Redevelopment of Shin-Taishakugawa Power Station
Location/country of the	Hiroshima Prefecture, Japan
project	
Implementing body of the	Chugoku Electric Power Co., Inc.
project	
Implementing period	2003 – 2006
Type of the project	Redevelopment
Specifications (before the	
project)	
Name of power plant	Taishakugawa Power Station
Name of river	Taishakugawa River and Fukumasugawa River
Type of power plant	Waterway type
Year of commission	1924
Maximum output (MW)	4.4
Maximum discharge	5.7
(m3/s)	
Effective head (m)	95.2
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Taishakugawa Power Station
Name of river	Fukumasugawa River
Type of power plant	Waterway type
Year of commission	2006
Maximum output (MW)	2.4
Maximum discharge	3.1
(m3/s)	
Effective head (m)	95.2
Annual power	N/A
production (GWh)	
Name of power plant	Shin-Taishakugawa Power Station
Name of river	Taishakugawa River
Type of power plant	Dam & waterway type
Year of commission	2006
Maximum output (MW)	11
Maximum discharge	10
(m3/s)	
Effective head (m)	129
Annual power	N/A
production (GWh)	Teichel/ugou/o Dom, constructed in 1004, here here used
Overview of the project	Taishakugawa Dam, constructed in 1924, has been used as an intake dam for Taishakugawa Power Station, with a capacity of
	4.4MW and tourism resources. However, about 80-year-old dam
	had become not to meet the recent standards for stability and
	the discharge capacity of the spillway had been insufficient for
	the reservoir operation during the flood period. Furthermore,

	there had been unused water head up to about 35m caused by taking in power water from a tank located just downstream of dam and conveying it to the power house through a non- pressured waterway. Therefore, Chugoku Electric Power Company, owner of the power station, implemented a redevelopment project during 2003-2006, including the structural reinforcement of the dam body, the increase of flood discharge capacity and the construction of a new power station "Shin- Taishakugawa Power Station" with a capacity of 11MW using the unused water head of dam along with the renewal of old power station.
Improvement of	
performance Increase in output	Maximum output was decreased by 2MW in Taisbakurawa
	Maximum output was decreased by 2MW in Taishakugawa Power Station. In contrast, it was increased by 11MW due to the construction of Shin-Taishakugawa Power Station. The net increase in maximum output was 9MW.
Increase in power production	Annual power production was increased by a net increase in the total maximum output of the two stations.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	Refurbishment of about 80-year-old dam with structural reinforcement and increase in spillway capacity
Cost	N/A
Environmental	Conservation of natural environment and landscape in the
conservation	national park area
Legal restriction	Legal regulation for the natural environment
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type Requirement A:	Utilization of unused water head at the dam through the
Effective use of water	refurbishment of dam and the construction of a new power
resources	station. Existing Taishakugawa Power Station decreased power production, but the total power production of Taishakugawa and Shin-Taishakugawa Power Stations increased.
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Jp.32: Shin-
	Taishakugawa
	https://www.ieahydro.org/media/5fb06b0d/
	Vol2_Case_History_English(207-408).pdf

[2] IEA Hydro (2017) Annex II, Subtask A5 Appendix A2, Collection of Good Practice Reports, Part 1 JP05: Taishakugawa and Shin-Taishakugawa
https://www.ieahydro.org/media/6eb4c0b4/
AnnexII_STA5_Appendix2_GoodPracticeReports_Part%201_p1-
104.pdf

Project code	JP36
Name of the project	Expansion of Okutadami Power Staion and Ohtori Power
	Station
Location/country of the	Fukushima Prefecture, Niigata Prefecture, Japan
project	
Implementing body of the	Electric Power Development Co., Ltd.
project	
Implementing period	1999 – 2003
Type of the project	Expansion
Specifications (before the	
project)	
Name of power plant	Okutadami Power Station
Name of river	Tadami River
Type of power plant	Dam and waterway type
Year of commission	1960
Maximum output (MW)	360
Maximum discharge	249
(m3/s)	
Effective head (m)	170
Annual power	N/A
production (GWh)	
Name of power plant	Ohtori Power Station
Name of river	Tadami River
Type of power plant	Dam type
Year of commission	1963
Maximum output (MW)	95
Maximum discharge	220
(m3/s)	
Effective head (m)	50.8
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Okutadami Power Station
Name of river	Tadami River
Type of power plant	Dam and waterway type
Year of commission	2003
Maximum output (MW)	560
Maximum discharge	387
(m3/s)	
Effective head (m)	170/164.2
Annual power production (GWh)	N/A
Namo of power plant	Ohtori Power Station
Name of power plant Name of river	Tadami River
Type of power plant Year of commission	Dam type 2003
	2000

Maximum output (MW)	182
Maximum discharge	427
(m3/s)	
Effective head (m)	50.8/48.1
Annual power	N/A
production (GWh)	
Overview of the project	Expansion of Okutadami and Ohtori Power Stations aimed to increase their peak supply capacity by 287MW (Okutadami; 200MW, Ohtori; 87MW). This was the largest case in Japan in terms of the expansion of a conventional type of hydropower by increasing the peak-power supply capacity of a large-scale reservoir. In the case of Okutadami, one of the new technologies adopted for the construction is a large-sized temporary closing for intake construction without lowering the reservoir water level, which contributed to securing the construction period and reducing construction costs. The construction work was conducted considering the environmental conservation and the operation of existing power units.
Improvement of	
performance	Tatal maximum autout was increased by avairable
Increase in output	Total maximum output was increased by expansion.
Increase in power production	N/A
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	In the construction of the Okutadami water intake, it was necessary not to lower the reservoir water level during the construction period because of the continuous regular operation of the existing power station. Consequently, on the upstream side of the dam, a temporary closing designed for a maximum water depth of 50m (the first construction case of this size in Japan) was installed so that the construction of water intake, boring of a hole into the dam body and installation of the hydraulic steel pipe, intake gate sheet and others were able to be conducted in dry conditions.
Cost	N/A
Environmental conservation	With the view to protect the natural ecosystem including the protection measures for Golden Eagles and Mountain Hawk Eagles, and to continuously minimize the environmental load caused by the expansion construction, the following environmental countermeasures were conducted: • Protection of rare important birds • Countermeasures against noise and vibration
	Countermeasures to maintain water quality
	Lighting and color strategy
Legal restriction	N/A

Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-2 Development without using unused potential
Requirement A: Effective use of water resources	N/A
B: Improved and/or advanced methodologies	In the expansion of Okutadami, a large-sized temporary closing for intake construction without lowering reservoir water level was adopted, which contributed to securing the construction period and reducing construction cost.
C: Improvement of reliability/flexibility corresponding to market needs	The expansion of Okutadami Power Station increased peak- power supply capacity using the existing reservoir (peaking- time revised). It contributed to the improvement of reliability and flexibility of the existing power station.
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Jp.36_Okutadami_Ohtori <u>https://www.ieahydro.org/media/5fb06b0d/</u> Vol2_Case_History_English(207-408).pdf

Project code	JP39
Name of the project	New construction of Okukiyotsu No. 2 Pumped Storage Power
	Station
Location/country of the	Niigata Prefecture, Japan
project	5 / 1
Implementing body of the	Electric Power Development Co., Ltd.
project	
Implementing period	1992 – 1996
Type of the project	New construction
Specifications (before the	
project)	
Name of power plant	Okukiyotsu Pumped Storage Power Station
Name of river	Kassa River
Type of power plant	Recirculating pumped storage
Year of commission	1978
Maximum output (MW)	1000
Maximum discharge	260
(m3/s)	
Effective head (m)	470
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Okukiyotsu Pumped
project)	Storage Power Station are the same as those before the
	project. Okukiyotsu No. 2 Pumped Storage Power Station was
	newly constructed using the upper and lower pondages of the
	existing power station.
Name of power plant	Okukiyotsu No. 2 Pumped Storage Power Station
Name of river	Kassa River
Type of power plant	Recirculating pumped storage
Year of commission	1996
Maximum output (MW)	600
Maximum discharge	154
(m3/s)	
Effective head (m)	470
Annual power	N/A
production (GWh)	
Overview of the project	Okukiyotsu Pumped Storage Power Station is located in
	Niigata Prefecture and has a capacity of 1 GW. Kassa Dam
	for the upper pondage was constructed in the tributary of
	Kiyotsu River, and Futai Dam for the lower pondage in the
	main river of Kiyotsu River. Okukiyotsu No.2 Pumped Storage
	Power Station was constructed as the expanded power
	station by using the existing pondage of Okukiyotsu Pumped Storage Power Station. The project was developed as the top-
	priority project for the emergent peak-power supply in order to
	meet the increase of peak power demand after 1996. Before
	the project, the peak power generation was able to be
	conducted for 12 hours with the existing regulating pondage
	capacity. After the project, even with an additional peak
	power increase of 600MW, it is possible to generate peak

	norman fan 7.0 hanne huide a ffasting van af tha andation
	power for 7.6 hours by the effective use of the existing
Improvement of	regulating pondages.
performance	
Increase in output	Maximum output was increased by the construction of a new
increase in output	pumped storage power station using the existing regulating
	pondage.
Increase in power	No
production	
Reliability/flexibility	Okukiyotsu and Okukiyotsu No.2 Pumped Storage Power
	Stations are connected to the power supply grid to the
	metropolitan area, enabling high-power operation at peak-
	power demand. Expansion of the power station increased the
	reliability and flexibility in system operation.
Others	N/A
Challenges in the project	
Technology	In the excavation of the inclined shaft of underground penstock,
	for the pilot excavation of the upper inclined portion where the
	bedrock was relatively hard, an Alimak climber was used, and for
	the lower portion where the bedrock was relatively unstable, a
	Raise bowler machine was used to improve the work efficiency.
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-2 Development without using unused potential
development type	
Requirement A:	
Effective use of water resources	
B: Improved and/or	
advanced	
methodologies	
C: Improvement of	A new pumped storage power station increased the reliability
reliability/flexibility	and flexibility of the power supply by enabling high-power
corresponding to	operation at peak-power demand.
market needs	
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Jp.39_Okukiyotsu #2
	https://www.ieahydro.org/media/5fb06b0d/
	Vol2_Case_History_English(207-408).pdf
	[2] Electric Power Development Co., Ltd. Oku Kiyotsu Power
	Station Overview
	https://www.jpower.co.jp/okky/about/
	https://www.jpower.co.jp/okky/about/

Project code	JP41
Name of the project	Redevelopment of Hanakawa Power Station
Location/country of the	Ibaraki Prefecture, Japan
project	ibaraki i relecture, bapan
Implementing body of the	Tokyo Electric Generation Co., Inc.
project	
Implementing period	2009 – 2011
Type of the project	Redevelopment
Specifications (before the	
project)	
Name of power plant	Hanakawa Power Station
Name of river	Hanazono River
Type of power plant	waterway type
Year of commission	1908 (abolished in 1971)
Maximum output (MW)	0.1
Maximum discharge	0.78
(m3/s)	
Effective head (m)	18.17
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Hanakawa Power Station
Name of river	Hanazono River
Type of power plant	waterway type
Year of commission	2011
Maximum output (MW)	0.13
Maximum discharge	1
(m3/s)	
Effective head (m)	17.35
Annual power	N/A
production (GWh)	
Overview of the project	Hanakawa Power Station was redeveloped from the old
	hydropower station that had been abolished. Existing power
	facilities were transferred from Kita-Ibaraki City to Tokyo
	Electric Generation Co., Ltd. Maximum discharge was
	increased from 0.78 m3/s to 1.00 m3/s after reviewing the
	waterflow capacity of the waterway. The maximum output was
	increased by 30kW. Redevelopment of the abolished power
	station made it possible to decrease the construction costs by
	using the existing power facilities.
Improvement of	
performance	
Increase in output	Maximum output was increased from 0.1MW to 0.13MW.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	

Technology	Maximum discharge was increased by reviewing the possible capacity of the waterway.
Cost	Construction costs were reduced significantly by the utmost utilization of the existing facilities. For penstock, by inserting high-density polyethylene pipe into the existing steel pipe to make it a double pipe, great cost savings were achieved without the removal of the existing pipe and a public subsidiary system for hydropower development was utilized.
Environmental	N/A
conservation Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-1 Development using unused potential
Requirement A: Effective use of water resources	The abolished power station was redeveloped using unused potential and the existing facilities.
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Jp.41_Hanakawa <u>https://www.ieahydro.org/media/5fb06b0d/</u> Vol2_Case_History_English(207-408).pdf

Project code	JP101
Name of the project	Renewal of Ooigawa Power Station
Location/country of the	Shizuoka Prefecture. Japan
project	
Implementing body of the	Chubu Electric Power Co., Inc.
project	
Implementing period	2012 – 2013
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Ooigawa Power Station
Name of river	Oi River
Type of power plant	Dam and waterway type
Year of commission	1936
Maximum output (MW)	68.2
Maximum discharge	72.35
(m3/s)	
Effective head (m)	112.73
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Ooigawa Power Station
project)	are the same as those before the project. The existing
	waterway was remodeled to increase water flow capacity.
Name of power plant	-
Name of river	-
Type of power plant	•
Year of commission	2013
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	-
production (GWh)	
Overview of the project	At the Sumatagawa Dam of Ooigawa Power Station (dam &
	waterway type), the water up to 60m3/s supplied from
	Ooigawa Dam at the main river is conveyed to the dam. The
	water of a maximum of 72.35m3/s including the water taken
	from the Sumata River, is conveyed to the power station through a siphon channel and headrace tunnel. This siphon
	was constructed in 1936, and because of its complicated
	shape and limited water flow capacity of 43m3/s, it was
	difficult to take water up to 60m3/s for about 10 days a year.
	Therefore, in order to increase the water flow capacity of the
	siphon channel, remodeling work of the headrace junction
	was carried out from 2012 to 2013 for the increase of power
	production.
Improvement of	
performance	
Increase in output	No

Increase in power production	Intake discharge was increased by expanding the flow capacity of the siphon channel and annual power production was increased.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	N/A
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	I-4 Renewal of civil engineering facilities
development type	III-2 Optimized operation of reservoir/power plant
Requirement A: Effective use of water resources	N/A
B: Improved and/or advanced methodologies	Power production was increased by remodeling the existing siphon channel.
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] Electric Power Civil Engineering, No.367, 2013.9 (In Japanese)

Project code	JP102
	New construction of Kawahira No.2 Power Station
	Tottori Prefecture, Japan
project	
	Chugoku Electric Power Co., Inc.
project	
	2006
	New Construction
Specifications (before the	
project)	
	Kawahira Power Station
	Hino River
	Waterway type
	1931
	1.3
	17.39
(m3/s)	
	9.55
	N/A
production (GWh)	
	Note: Specifications of the existing Kawahira Power Station
	are the same as those before the project. Kawahira No.2
	Power Station was newly constructed using the facilities of the
	existing power station.
	Kawahira No,2 Power Station
	Hino River
	Waterway type
	2006
	0.12
	1.63
(m3/s)	
	9.27
	0.782
production (GWh)	
, , , , , , , , , , , , , , , , , , ,	Kawahira Power Station constructed in 1931, is located in the
	reduced water section of Shin-Kawahira Power Station
	upstream, built in 1979 and can operate for only about 70
	days a year due to the reduced waterflow with a plant factor of
	about 10%. Therefore, the Kawahira No.2 Power Station was
	newly constructed using a smaller amount of water discharge
	than the Kawahira Power Station. This expansion made it
	possible to use the river flow effectively and to increase the
	total power generation of the two power stations.
Improvement of	
performance	
	Maximum output was increased due to the new construction
	of a power station.
	Annual power production was increased using a small amount
	of water discharge that the existing power station could not
	use.

Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	Under water turbine/generator was adopted to reduce the construction cost of civil facilities.
Cost	Renewable Portfolio Standard (RPS) Law was applied for small hydropower development and the construction costs were subsidized by the New Energy and Industrial Technology Development Organization (NEDO) by 30%.
Environmental conservation	N/A
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A: Effective use of water resources	Unused waterflow at the existing power station was effectively used by the new construction of a power station using a small water discharge.
B: Improved and/or	New construction of a small-sized power station to improve
advanced	power operation and increase annual power production by
methodologies	lowering available water discharge for the turbine.
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] Electric Power Civil Engineering, No.329, 2007.5 (In Japanese)

Project code	JP103
Name of the project	New construction of Yukomanbetsu Power Station
Location/country of the	Hokkaido, Japan
project	Tiorkaldo, Japan
Implementing body of the	Hokkaido Electric Power Co., Inc.
project	
	2012 – 2014
Implementing period	
Type of the project	New Construction
Specifications (before the	
project)	
Name of power plant	
Name of river	
Type of power plant	
Year of commission	
Maximum output (MW)	
Maximum discharge	
(m3/s)	
Effective head (m)	
Annual power	
production (GWh)	
Specifications (after the	Note: Yukomanbetsu Power Station was newly constructed
project)	using the facilities of the existing Eoroshi Power Station.
Name of power plant	Yukomanbetsu Power Station
Name of river	Yukomanbetsu River
Type of power plant	Waterway type
Year of commission	2014
Maximum output (MW)	0.69
Maximum discharge	1.3
(m3/s)	
Effective head (m)	66.1
Annual power	4.154
production (GWh)	
Overview of the project	Yukomanbetsu Power Station was newly constructed with the
Overview of the project	partially improved water intake facilities of the existing Eoroshi
	Power Station and a new water tank, penstock, power house
	and tailrace. The maximum output of the new power station is
	690kW, using a maximum discharge of 1.3m3/s and a
	hydraulic head of 66.1m. It effectively uses the river's unused
	water resources.
Improvement of	
performance	
Increase in output	Maximum output was increased due to the construction of a
	new power station.
Increase in power	Annual power production was increased with the increase in
production	output.
Reliability/flexibility	N/A
Others Challenges in the project	N/A
Challenges in the project	

Technology	Installation of penstock was needed on the steep slope area, and several construction methods were introduced such as the light-weight FRPM pipes for easy installation, the medium- fluidity concrete materials, and the steep slope reinforcement earthwork.
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	An unused hydraulic head in the existing Yukomanbetsu
Effective use of water	waterway was used for power generation.
resources	
B: Improved and/or advanced	N/A
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	MA
References	[1] Hokkaido Electric Power Press Release
	https://wwwc.hepco.co.jp/hepcowwwsite/info/2014/
	icsFiles/afieldfile/2014/06/20/140620.pdf

Project code	JP104
Name of the project	New construction of Konokidani Power Station
Location/country of the	Fukui Prefecture, Japan
project	
Implementing body of the	Electric Power Development Co., Ltd.
project	
Implementing period	2014 – 2016
Type of the project	New Construction
Specifications (before the	
project)	
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	-
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	-
production (GWh)	
Specifications (after the	Note: Konokidani Power Station was newly constructed using
project)	the unused potential in the existing waterway upstream of the
	Kuzuryu Dam.
Name of power plant	Konokidani Power Station
Name of river	Kuzuryu River
Type of power plant	Waterway type
Year of commission	2016
Maximum output (MW)	0.199
Maximum discharge	3.22
(m3/s)	
Effective head (m)	7.4
Annual power	1.43
production (GWh)	
Overview of the project	Konokidani Power Station, with a maximum output of 199kW
	was constructed using the unused hydraulic head at the
	Konokidani water injection point, where water is injected from the intake dam around Kuzuryu Dam in the most upstream of
	Kuzuryu River. This small-scale hydropower station was
	developed under the Feed-In-Tariff law for renewable energy
	promotion. An under-water turbine/generator was applied to
	make installation and maintenance easier. Furthermore, a
	generator without an accelerator was used as a non-oil type
	for oil spill prevention in the river.
Improvement of	
performance	
Increase in output	Maximum output was increased by the construction of a new
	power station.
Increase in power	Annual power production was increased by the increase in
production	output.
Reliability/flexibility	N/A

Others	N/A
Challenges in the project	
Technology	The reduction of the maximum output in the planning made it possible to connect the existing power grid and the cost of connection was reduced.
Cost	A case study was conducted on the scale of power generation, and the case of the largest IRR was selected as the optimal plan.
Environmental conservation	N/A
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A: Effective use of water resources	The unused hydraulic head at the Konokidani injection point was used for power generation.
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] Electric Power Civil Engineering, No.383, 2016.5 and No.393, 2018.1 (In Japanese)

Name of the project New construction of Kitanomata No.3 Power Station Location/country of the project Iwate Prefecture, Japan Implementing body of the project Iwate Prefecture Enterprise Bureau Implementing period 2009 – 2010 Type of the project New Construction Specifications (before the project) New Construction Name of power plant - Year of commission - Maximum output (MW) - Maximum discharge (m3/s) - Effective head (m) - Annual power production (GWh) - Specifications (after the project) Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station. Name of power plant Kitanomata No. 3 Power Station Year of commission 2010 Maximum discharge (m3/s) 0.41 Effective head (m) 6.25 Annual power production (GWh) 0.41 Preview of the project Kitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata No 0.41 Overview of the project<	Project code	JP105
Location/country of the project Iwate Prefecture, Japan Implementing body of the project Iwate Prefecture Enterprise Bureau Implementing period 2009 – 2010 Type of the project New Construction Specifications (before the project) - Name of power plant - Year of commission - Year of commission - Maximum output (MW) - Maximum discharge (m3/s) - Effective head (m) - Annual power - project) - Name of river - Type of power plant - Specifications (after the project) - Name of river Kitanomata No. 3 Power Station Name of river Kitanomata River Type of power plant Kitanomata River Type of power plant Kitanomata No. 3 Power Station Maximum discharge (m3/s) - Effective head (m) 6.25 Annual power - Year of commission 2.010 Maximum discharge (m3/s) - Effective head (m) 6.25 <th></th> <th></th>		
project Iwate Prefecture Enterprise Bureau Implementing poriod 2009 – 2010 Type of the project New Construction Specifications (before the project) New Construction Name of power plant - Type of power plant - Year of commission - Maximum output (MW) - Maximum discharge (m3/s) - Effective head (m) - Annual power - projuction (GWh) - Specifications (after the project) Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station. Name of power plant Kitanomata No. 3 Power Station Name of power plant Kitanomata No. 3 Power Station Name of power plant Kitanomata No. 3 Power Station Name of power plant Kitanomata No. 3 Power Station Name of power plant Kitanomata No. 3 Power Station Name of power plant Kitanomata No. 3 Power Station Name of power plant Kitanomata No. 3 Power Station is a small-scale hydropower station. Name of power plant Kitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydrauic head in the		
Implementing body of the project Iwate Prefecture Enterprise Bureau Implementing period 2009 – 2010 Type of the project New Construction Specifications (before the project) - Name of power plant - Year of commission - Year of commission - Maximum output (MW) - Maximum discharge (m3/s) - Effective head (m) - Annual power - project) - Name of power plant - Specifications (after the project) Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station. Name of power plant Kitanomata No. 3 Power Station Name of power plant Kitanomata No. 2 Power Station Maximum output (MW) 0.061 Maximum output (MW) 0.061 Maximum output (MW) 0.061 Maximum output (MW) 0.41 production (GWh) 6.25 Annual power 0.41 production (SWh) 6.25 Annual power<		
project 2009 - 2010 Implementing period 2009 - 2010 Specifications (before the project) New Construction Name of power plant - Type of power plant - Year of commission - Maximum output (MW) - Maximum output (MW) - Maximum discharge - (m3/s) - Specifications (after the project) - Name of power plant - Annual power - production (GWh) - Specifications (after the project) Note: Kitanomata No.3 Power Station Name of power plant Kitanomata No.3 Power Station Name of power plant Kitanomata No.3 Power Station Name of commission 2010 Maximum output (MW) 0.061 Maximum discharge 1.34 (m3/s) 6.25 Annual power 0.41 Overview of the project Kitanomata No. 3 Power Station is a small-scale hydropower Station the existing Kitanomata Power Station to the existing Kitanomata Power Station to the existing Kitanomata Power Station the maximum dischar		Iwate Prefecture Enterprise Bureau
Implementing period2009 – 2010Type of the projectNew ConstructionSpecifications (before the project)-Name of power plant-Type of power plant-Type of power plant-Waximum output (MW)-Maximum discharge (m3/s)-Effective head (m)-Specifications (after the project)-Name of power plant-Specifications (after the project)Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station.Name of power plantKitanomata No. 3 Power StationYear of commission2010Year of commission2010Maximum discharge (m3/s)1.34Effective head (m)6.25Annual power production (GWh)0.061Maximum discharge (m3/s)1.34Coreview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No. 3 Power Station is a small-scale hydropower station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No. 3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.4 nower Station is about 6m in an energy- killing bas		
Type of the project New Construction Specifications (before the project) • Name of power plant • Type of power plant • Type of power plant • Year of commission • Maximum output (MW) • Maximum discharge (m3/s) • Effective head (m) • Annual power production (GWh) • Specifications (after the project) Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station. Name of power plant Kitanomata No. 3 Power Station Name of river Kitanomata River Type of power plant Waterway type Year of commission 2010 Maximum discharge (m3/s) 0.41 Effective head (m) 6.25 Annual power station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata No. 3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No. 3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No. 3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No. 3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No. 3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3		2009 – 2010
Specifications (before the project) Name of power plant Name of power plant - Type of power plant - Year of commission - Maximum output (MW) - Maximum discharge (m3/s) - Effective head (m) - Annual power production (GWh) - Specifications (after the project) Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station. Name of power plant Kitanomata No. 3 Power Station Name of river Kitanomata No. 3 Power Station Type of power plant Waterway type Year of commission 2010 Maximum discharge (m3/s) 1.34 Effective head (m) 6.25 Annual power production (GWh) 0.41 Overview of the project Kitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kainomata Power Station to the existing Kainomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the maximum discharge for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy-killing basin. Existing facilities were used to the utmost, such as the steel pi		New Construction
project) - Name of power plant - Type of power plant - Type of power plant - Year of commission - Maximum output (MW) - Maximum discharge (m3/s) - Effective head (m) - Annual power - production (GWh) - Specifications (after the project) Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station. Name of power plant Kitanomata No. 3 Power Station Name of river Kitanomata River Type of power plant Waterway type Year of commission 2010 Maximum discharge 1.34 (m3/s) 6.25 Annual power 0.41 production (GWh) 0.41 Overview of the project Kitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kitanomata No. 3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to		
Name of river - Type of power plant - Year of commission - Maximum output (MW) - Maximum discharge (m3/s) - Effective head (m) - Annual power production (GWh) - Specifications (after the project) Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station. Name of power plant Kitanomata River Type of power plant Waterway type Year of commission 2010 Maximum discharge (m3/s) 1.34 Effective head (m) 6.25 Annual power production (GWh) 0.41 Overview of the project Kitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6 m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock. Improveme		
Type of power plant Year of commission-Maximum output (MW) Maximum discharge (m3/s)-Effective head (m) Production (GWh)-Specifications (after the project)-Name of power plant Xame of riverNote: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station.Name of power plant Year of commissionNote: Kitanomata No.3 Power Station Kitanomata No.3 Power StationMaximum output (MW) Maximum output (MW)0.061Maximum discharge (m3/s)6.25Annual power production (GWh)6.25Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1	Name of power plant	-
Year of commission - Maximum output (MW) - Maximum discharge - (m3/s) - Effective head (m) - Annual power - production (GWh) - Specifications (after the project) Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station. Name of power plant Kitanomata No. 3 Power Station Name of river Kitanomata No. 3 Power Station Type of power plant Waterway type Year of commission 2010 Maximum output (MW) 0.061 Maximum discharge 1.34 (m3/s) - Effective head (m) 6.25 Annual power 0.41 production (GWh) - Overview of the project Kitanomata No. 3 Power Station is a small-scale hydropower station to the existing Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is n.at most, such as the steel pipe installed in the steep part of the existing headrace as a penstock. Improvement of performance -	Name of river	-
Maximum output (MW) - Maximum discharge (m3/s) - Effective head (m) - Annual power production (GWh) - Specifications (after the project) Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station. Name of power plant Kitanomata No. 3 Power Station Name of river Kitanomata River Type of power plant Waterway type Year of commission 2010 Maximum discharge (m3/s) 0.61 Effective head (m) 6.25 Annual power production (GWh) 0.41 Overview of the project Kitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock. Improvement of performance Maximum output was increased by the construction of a new power station. Increase in output Maximum output was increased by the to the increase in	Type of power plant	-
Maximum discharge (m3/s)-Effective head (m)-Annual power production (GWh)-Specifications (after the project)Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station.Name of power plantKitanomata No.3 Power StationName of riverKitanomata RiverType of power plantWaterway typeYear of commission2010Maximum output (MW)0.061Maximum discharge (m3/s)1.34Effective head (m)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in	Year of commission	-
Maximum discharge (m3/s)-Effective head (m)-Annual power production (GWh)-Specifications (after the project)Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station.Name of power plantKitanomata No.3 Power StationName of riverKitanomata RiverType of power plantWaterway typeYear of commission2010Maximum output (MW)0.061Maximum discharge (m3/s)1.34Effective head (m)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in	Maximum output (MW)	-
(m3/s)Effective head (m)Annual power production (GWh)Specifications (after the project)Name of power plantName of power plantKitanomata No. 3 Power Station was newly constructed using the unused potential in the headrace of the existing power station.Name of power plantKitanomata No. 3 Power StationName of niverType of power plantWaterway typeYear of commission2010Maximum discharge (m3/s)Effective head (m)0.41Production (GWh)Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 60 in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		-
Annual power production (GWh)-Specifications (after the project)Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station.Name of power plantKitanomata No. 3 Power StationName of riverKitanomata No. 3 Power StationType of power plantWaterway typeYear of commission2010Maximum discharge (m3/s)1.34Effective head (m) Production (GWh)6.25Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is a shout 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		
production (GWh)Specifications (after the project)Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station.Name of power plantKitanomata No.3 Power StationName of riverKitanomata RiverType of power plantWaterway typeYear of commission2010Maximum output (MW)0.061Maximum discharge (m3/s)1.34Effective head (m)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata. No. 3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is a about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in	× /	-
Specifications (after the project)Note: Kitanomata No.3 Power Station was newly constructed using the unused potential in the headrace of the existing power station.Name of power plantKitanomata RiverType of power plantWaterway typeYear of commission2010Maximum output (MW)0.061Maximum discharge (m3/s)1.34Effective head (m)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata. No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is a solut 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in power station.		-
project)using the unused potential in the headrace of the existing power station.Name of power plantKitanomata No. 3 Power StationName of riverKitanomata RiverType of power plantWaterway typeYear of commission2010Maximum output (MW)0.061Maximum discharge (m3/s)1.34Effective head (m)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		
Name of power plantKitanomata No. 3 Power StationName of riverKitanomata RiverType of power plantWaterway typeYear of commission2010Maximum output (MW)0.061Maximum discharge (m3/s)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is a bout 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		
Name of power plantKitanomata No. 3 Power StationName of riverKitanomata RiverType of power plantWaterway typeYear of commission2010Maximum output (MW)0.061Maximum discharge (m3/s)1.34Effective head (m)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in	project)	
Name of riverKitanomata RiverType of power plantWaterway typeYear of commission2010Maximum output (MW)0.061Maximum discharge (m3/s)1.34Effective head (m)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		
Type of power plantWaterway typeYear of commission2010Maximum output (MW)0.061Maximum discharge (m3/s)1.34Effective head (m)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is a subt 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		
Year of commission2010Maximum output (MW)0.061Maximum discharge (m3/s)1.34Effective head (m)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		
Maximum output (MW)0.061Maximum discharge (m3/s)1.34Effective head (m)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		
Maximum discharge (m3/s)1.34Effective head (m)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		
(m3/s)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		
Effective head (m)6.25Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		1.34
Annual power production (GWh)0.41Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in outputAnnual power production was increased due to the increase in		
production (GWh)Kitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in outputMaximum output was increased due to the increase in Annual power production was increased due to the increase in		
Overview of the projectKitanomata No. 3 Power Station is a small-scale hydropower station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		0.41
station using the unused hydraulic head in the headrace that conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		Kitanamata Na 2 Dawar Otation in a sur llas la last
conveys power water from the existing Kitanomata Power Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in	Overview of the project	
Station to the existing Kashiwadai Power Station. The maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in outputMaximum output was increased due to the increase in		
maximum discharge for Kitanomata No.3 is 1.34 m3/s which is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in outputMaximum output was increased due to the increase in		
is part of 4.1 m3/s for Kitanomata. The hydraulic head at the middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		
middle of the second headrace (headrace length of about 820 m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in outputMaximum output was increased due to the increase in		u
m) of Kashiwadai Power Station is about 6m in an energy- killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in outputMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		
killing basin. Existing facilities were used to the utmost, such as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		
as the steel pipe installed in the steep part of the existing headrace as a penstock.Improvement of performanceIncrease in outputMaximum output was increased by the construction of a new power station.Increase in powerAnnual power production was increased due to the increase in		,
Improvement of performance headrace as a penstock. Increase in output Maximum output was increased by the construction of a new power station. Increase in power Annual power production was increased due to the increase in		
Improvement of performance Maximum output was increased by the construction of a new power station. Increase in power Annual power production was increased due to the increase in		
performance Maximum output was increased by the construction of a new power station. Increase in power Annual power production was increased due to the increase in	Improvement of	
power station. Increase in power Annual power production was increased due to the increase in		
power station. Increase in power Annual power production was increased due to the increase in	Increase in output	Maximum output was increased by the construction of a new
		•
production output		
	production	output.

Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	N/A
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	The unused hydraulic head in the waterway of the existing
Effective use of water	power station was used for power generation.
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] 98th Practical Workshop on Small and Medium-sized
	Hydroelectric Power Generation Technology, NEF, No.1 2013
	(In Japanese).

Project code	JP106
Name of the project	New Construction of Okususobana No.2 Power Station
Location/country of the	Nagano Pref. Japan
project	
Implementing body of the	Nagano Prefecture, Public Enterprise Bureau
project	Hagano Freitoraio, Fabilo Enterphoe Baroad
Implementing period	2015 - 2017
Type of the project	New Construction
Specifications (before the	
project)	
Name of power plant	Okususobana Power Station
Name of river	Susobana River
Type of power plant	Dam type
Year of commission	1979
Maximum output (MW)	1.70
Maximum discharge	4
(m3/s)	
Effective head (m)	53.68
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Okususobana Power
project)	Station are the same as those before the project.
	Okususobana No.2 Power Station was newly constructed
	using the facilities of the existing power station.
Name of power plant	Okususobana No.2 Power Station
Name of river	Susobana River
Type of power plant	Dam type
Year of commission	2017
Maximum output (MW)	0.98
Maximum discharge	2.53
(m3/s)	
Effective head (m)	48.17
Annual power	5.067
production (GWh)	
Overview of the project	Spring snowmelt water was not available at the existing
	Okususoobana Power Station and was discharged from the
	Okususobana Dam. The spilled snowmelt water and unused
	water discharge from the valve during low river flow in summer were effectively used by the newly constructed
	Okususobana No.2 Power Station without constructing new
	intake facilities. Existing intake and a part of the penstock of
	the existing Okususobana Power Station were commonly
	used.
Improvement of	
performance	
Increase in output	Maximum output was increased by the construction of a new
	power station.
Increase in power	Annual power production was increased by the increase in
production	output.
Reliability/flexibility	N/A

Others	N/A
Challenges in the project	
Technology	N/A
Cost	In order to ensure economic efficiency, the existing intake and
	penstock were commonly used in the new power station.
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	A small-scale hydropower station was newly constructed
Effective use of water	using the unused spilled water from the dam.
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Nagano Prefecture home page
	https://www.pref.nagano.lg.jp/kigyo/infra/suido-denki/
	denki/koei/ichiran/okususobana-02.html

Project code	JP107
Name of the project	Redevelopment of Shin-Iwamatsu Power Station
Location/country of the	Hokkaido, Japan
project	
Implementing body of the	Hokkaido Electric Power Co., Inc.
project	
Implementing period	2013 – 2016
Type of the project	Redevelopment
Specifications (before the	
project)	
Name of power plant	Iwamatsu Power Station
Name of river	Tokachi River
Type of power plant	Dam and waterway type
Year of commission	1942
	1942
Maximum output (MW)	
Maximum discharge	37.5
(m3/s) Effective head (m)	41.55
Annual power	79.9
production (GWh)	79.9
· · · · ·	
Specifications (after the	
project)	Chin Iwamatay Dawar Statian
Name of power plant	Shin-Iwamatsu Power Station
Name of river	Tokachi River
Type of power plant	Dam and waterway type
Year of commission	2016
Maximum output (MW)	16
Maximum discharge	45
(m3/s)	
Effective head (m)	40.3
Annual power	90.5
production (GWh)	
Overview of the project	Shin-Iwamatsu Power Station, with a maximum output of
	16MW was re-developed for the existing aged Iwamatsu
	Power Station, which was constructed in 1942, with a
	maximum output of 12.6MW. The penstock, powerhouse, and
	tailrace channel were newly built and the existing intake weir,
Improvement of	headrace and surge tank were used without change.
Improvement of performance	
Increase in output	Maximum output was increased from 12 SMM/ to 16MM/ by
	Maximum output was increased from 12.6MW to 16MW by the redevelopment.
Increase in power	Annual power production was increased by 10.6GWh due to
production	the increase in output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Challenges in the project	

Technology	Additional works such as curing sheets, embankments, and ground anchors were constructed due to the deformation of the earth retaining wall caused by frost heaving.
Cost	N/A
Environmental conservation	The construction of a long tailrace using the shield tunneling method was not adopted, considering the environmental impact.
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-1 Development using unused potential
Requirement A: Effective use of water resources	Effective utilization of unused potential in river water
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] Electric Power Civil Engineering, No.377, 2015.5. (In Japanese)

Project code	JP108
Name of the project	Renewal of Shimoyama Power Station
Location/country of the	Hiroshima Prefecture, Japan
project	
Implementing body of the	Chugoku Electric Power Co., Inc.
project	
Implementing period	2004 - 2005
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Shimoyama Power Station
Name of river	Takiyama River and Oosa River
Type of power plant	Waterway type
Year of commission	1934
Maximum output (MW)	10
Maximum discharge	14.32
(m3/s)	
Effective head (m)	85.5
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Shimoyama Power Station
Name of river	Oosa River
Type of power plant	Waterway type
Year of commission	2005
Maximum output (MW)	3.6
Maximum discharge	5
(m3/s)	
Effective head (m)	86.27
Annual power	N/A
production (GWh)	
Overview of the project	Shimoyama Power Station was commissioned in 1934 with an output of 10MW. In 1959, the Takiyamagawa Power Station, with an output of 51.5MW ,was commissioned to take water from upstream of Shimoyama Power Station. Therefore, the capacity factor of Shimoyama Power Station was decreased significantly due to small water discharge against maximum output. The renewal of Shimoyama Power Station was implemented from the viewpoint of an economical scale. Two units were replaced by one unit, and maximum discharge decreased from 14.32m3/s to 5.0m3/s. In addition, safety measures were taken for the spillway when the generator suddenly stopped and the spilled water discharged into the river.
Improvement of	
performance	
Increase in output	No
Increase of power production	No

Reliability/flexibility	N/A
Others	Downsizing of the turbine/generator improved the capacity
	factor of the power station.
	Renewal of spillway improved the safety of power station.
Challenges in the project	
Technology	In the renewal of the spillway, the existing penstock was used
	for the spillway pipe, and an energy-dissipation facility was
	installed in the power house to secure safety.
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	I-2 Renewal of electro-mechanical equipment changing intake
development type	discharge/hydraulic head
	III-1 Optimized operation of electro-mechanical equipment
Requirement A:	N/A
Effective use of water	
resources	Devention to the entired code of the conception facility
B: Improved and/or advanced	Downsizing to the optimal scale of the generation facility increased the capacity factor of the power station.
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Electric Power Civil Engineering, No.323, 2006.5. (In
	Japanese)

Project code	JP109
Name of the project	Redevelopment of Shin-Kousa Power Station
Location/country of the	Kumamoto Prefecture, Japan
project	
Implementing body of the	Kyushu Electric Power Co., Inc.
project	
Implementing period	2012 – 2019
Type of the project	Redevelopment
Specifications (before the	
project)	
Name of power plant	Kousa Power Station
Name of river	Midori River
Type of power plant	Waterway type
Year of commission	1951
Maximum output (MW)	3.9
Maximum discharge	19.3
(m3/s)	
Effective head (m)	25.1
Annual power	24
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Shin-Kousa Power Station
Name of river	Midori River
Type of power plant	Waterway type
Year of commission	2019
Maximum output (MW)	7.2
Maximum discharge	35
(m3/s) Effective head (m)	24.46
Annual power	30
production (GWh)	
Overview of the project	Kousa Power Station is located downstream of Funatsu Dam
Overview of the project	in the middle of the Midori River and started operation in
	1951. It has been 64 years since the commissioning, and the
	renewal was required because of significant deterioration.
	Since the maximum discharge of the upstream power station
	exceeds that of the Kousa Power Station, the water from
	intake weir was spilled for about 180 days a year. Therefore,
	the Shin-Kousa Power Station was constructed to install a
	turbine and generator using a larger amount of water
	discharge along with the abolition of the existing power
	station.
Improvement of performance	
Increase in output	Maximum output was increased from 3.9MW to 7.2MW by
	increasing maximum discharge.
Increase in power	Annual power production was increased by 6 GWh due to the
production	increase in output.
Reliability/flexibility	N/A

Others	N/A
Challenges in the project	
Technology	Construction of civil facilities such as new headrace tunnel was conducted in parallel with the operation of the existing power station.
Cost	N/A
Environmental	Environmental conservation was carried out by the
conservation	transplantation of rare plants and the confirmation of change in the mountain water stream due to the tunnel construction.
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-1 Development using unused potential
Requirement A: Effective use of water resources	Effective utilization of unused potential in the river. The increased water discharge by the redevelopment increased maximum output and annual power production.
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] Electric Power Civil Engineering, No.372, 2014.7. (In Japanese)

Project code	JP110
Name of the project	Renewal of Yugashima Power Station
Location/country of the	Shizuoka Prefecture, Japan
project	
Implementing body of the	Tokyo Electric Generation Company
project	
Implementing period	2011 - 2012
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Yugashima Power Station
Name of river	Kano River
Type of power plant	Waterway type
Year of commission	1930
Maximum output (MW)	1.6
Maximum discharge	1.61
(m3/s)	
Effective head (m)	134.99
Annual power	5.28
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Yugashima Power Station
Name of river	Kano River
Type of power plant	Waterway type
Year of commission	2012
Maximum output (MW)	2.0
Maximum discharge	1.9
(m3/s)	
Effective head (m)	132.17
Annual power	6.6
production (GWh)	
Overview of the project	Yugashima Power Station started operation in 1930. The
	renewal and upgrade of the aged power station was carried
	out in 2011 - 2012 by replacing the existing Francis turbine
	0.8MW (2 units) with a Turgo impulse turbine 2MW (1 unit)
	and increasing maximum discharge to use the existing
	regulating pondage effectively. The existing spillway was
	abolished to reduce the risk of public disasters, and the
	deflector of the Turgo turbine controlled the spilled water
	during the shutdown of the power operation.
Improvement of performance	
Increase in output	Maximum output was increased from 1.6 M/M to 2.0 M/M by
	Maximum output was increased from 1.6 MW to 2.0 MW by the increase of maximum discharge.
Increase in power	Annual power production was increased with the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A

Challenges in the project	
Technology	The existing spillway was abolished to reduce the risk of public disasters, and the deflector of the Turgo turbine
	controlled the spilled water during the shutdown of the power operation.
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	I-2 Renewal of electro-mechanical equipment changing intake
development type	discharge/hydraulic head
Requirement A:	Effective utilization of unused potential in the river. The
Effective use of water	increase of maximum discharge by renewal increased
resources	maximum output and annual power production.
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Practical Workshop on Small and Medium-sized
	Hydroelectric Power Generation Technology, NEF. (In
	Japanese)

Project code	JP111
Name of the project	Operational change of Sakaigawa Power Station
Location/country of the	Toyama Prefecture, Japan
project	······································
Implementing body of the	Kansai Electric Power Co., Inc.
project	, '
Implementing period	2019
Type of the project	Change of power plant operation
	Water diversion
Specifications (before the	
project)	
Name of power plant	Sakaigawa Power Station
Name of river	Sakai River
Type of power plant	Dam and waterway type
Year of commission	1993
Maximum output (MW)	24.2
Maximum discharge	13
(m3/s)	
Effective head (m)	216.7
Annual power	73
production (GWh)	
Specifications (after the	Note: Specifications of the existing Sakaigawa Power Station
project)	are the same as those before the project except for annual
	power production. The construction of a new diversion tunnel
Name of power plant	upstream increased the inflow to the power station.
Name of river	-
Type of power plant	
Year of commission	-
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	96
production (GWh)	
Overview of the project	Sakaigawa Power Station is located on the Sakai River, a tributary of the Sho River, with a maximum discharge of 13.0 m3/s and a maximum output of 24.2MW. The plan for water withdrawal from the Kasura River, another tributary of the Sho River, included installation of an intake weir on the Kasura River and construction of a new headrace tunnel with a length of about 1.2km to take 5.6m3/s from the river and convey it to the Sakaigawa Dam upstream of the Sakaigawa Power Station. Although the maximum output of the power station did not change, the amount of water available for power generation increased due to the water diversion, and annual power production at the Sakaigawa Power Station increased. On the other hand, at the existing two power stations on the Sho River, annual power production decreased due to the water diversion. Since the ratio of output to discharge at

	Sakaigawa Power Station is about four times higher than those at two power stations on the Sho River, the total annual power production of three power stations increased by about 17GWh after the water diversion.
Improvement of	
performance	No
Increase in output	Annual power production was increased by the water
production	diversion from another river basin.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	N/A
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	It took more than a year for preliminary consultation with Gifu
-	Prefecture on the application for the release of safety forests
	related to the construction work due to the lack of clear
	criteria.
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	I-4 Renewal of civil engineering facilities
development type	III-2 Optimized operation of reservoir/power plant
Requirement A:	The water taken from another river basin was effectively used
Effective use of water	at the existing power station.
resources	The water was taken from enother river besin for the new or
B: Improved and/or advanced	The water was taken from another river basin for the power
methodologies	station, which had a higher ratio of output to discharge to increase the total annual power production of three existing
methodologies	power stations in the river system.
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Kansai Electric Power Co., Inc. Press Release Dec. 2nd
	2019.
	[2] Practical Workshop on Small and Medium-scale
	Hydropower Generation Technology, No.110, NEF, 2017. (In
	Japanese)

Project code	JP112
Name of the project	New Construction of Shumarinai Power Station
Location/country of the	Hokkaido, Japan
project	
Implementing body of the	Hokkaido Electric Power Co., Inc.
project	
Implementing period	2013
Type of the project	New Construction
	Change of power plant operation
Specifications (before the	
project)	
Name of power plant	
Name of river	
Type of power plant	
Year of commission	
Maximum output (MW)	
Maximum discharge	
(m3/s)	
Effective head (m)	
Annual power	
production (GWh)	
Specifications (after the	Note: Shumarinai Power Station was newly constructed using
project)	the existing pumping facilities to the intake reservoir of the
	existing Uryu Power Station.
Name of power plant	Shumarinai Power Station
Name of river	Uryu River
Type of power plant	Dam type
Year of commission	2013
Maximum output (MW)	1.12
Maximum discharge	4.36
(m3/s)	
Effective head (m)	32.2
Annual power	N/A
production (GWh)	
Overview of the project	Shumarinai Power Station was constructed using the existing
	facility to pump water from the Mitsumata Intake Weir on the
	Uryu River to the Uryu Dam Reservoir. A new pump-turbine
	generator was installed for both pumping and generation
	functions. During the non-irrigation season (September to
	April), the water of 2.75 m3/s is pumped up to the Uryu Dam
	and used for power generation at the existing Uryu Power
	Station. In the irrigation season, the water of 4.36 m3/s is discharged reversely through Shumarinai Power Station for
	both power generation and irrigation.
Improvement of	
performance	
Increase in output	A small-scale hydropower station using irrigation water was
	newly constructed by remodeling the pumping facility to
	pump-turbine and generator.

	Annual newer production was increased by a new power
Increase in power production	Annual power production was increased by a new power
	station using the unused potential.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	N/A
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	III-2 Optimized operation of reservoir/power plant
Requirement A:	River water was effectively used in both irrigation and non-
Effective use of water	irrigation periods by remodeling the existing pumping facility.
resources	
B: Improved and/or	Annual power production was increased by adding a
advanced	generation function to the existing pumping facility.
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Journal of Turbomachinery Society of Japan, Vol.42, No.7.
	(In Japanese)
	[2] Journal of Smart Processing Society for Materials, Vol.3,
	No.2, 2014. (In Japanese)
	[3] Ebara Jihou, No.247, 2015.4. (In Japanese)
	······································

Project code	JP113
Name of the project	Operational change of Shirotagawa Power Station
Location/country of the	Shizuoka Prefecture, Japan
project	
Implementing body of the	Tokyo Electric Generation Co., Inc.
project	
Implementing period	2016
Type of the project	Change of power plant operation
Specifications (before the	
project)	
Name of power plant	Shirotagawa Power Station
Name of river	Shirota River, Kawakubo River
Type of power plant	Waterway type
Year of commission	2015
Maximum output (MW)	3.1
Maximum discharge	2.07
(m3/s)	
Effective head (m)	181.46
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Shirotagawa Power
project)	Station are the same as those before the project except for
	annual power production. The amount of water intake was
	increased by improving intake control.
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	2016
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	0.144
production (GWh)	
Overview of the project	Shiratagawa Power Station started operation in 1927. It was
	renewed in 2015 with a maximum output of 3.1MW and
	without changing maximum discharge of 2.07m3/s. The intake
	resume after the flood was operated manually, and in order to
	reduce man-power and increase power production, an
	automatic resume of water intake was added to the existing water intake control system in 2016. It can shorten the water
	intake stop time during floods and increase annual power
	production.
Improvement of	
performance	
Increase in output	No
Increase in power	Annual power production was increased due to the
production	improvement of intake operation.
Reliability/flexibility	N/A
Others	N/A

Challenges in the project	
Technology	Automatic control of sand-flushing gate of weir and intake gate
Cost	N/A
Environmental conservation	N/A
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	III-2 Optimized operation of reservoir/power plant
Requirement A: Effective use of water resources	N/A
B: Improved and/or advanced methodologies	Technically, water intake control was improved, and annual power production was increased.
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	N/A

Project code	JP114
Name of the project	Operational change of Nakazato Power Station
Location/country of the	Ibaraki Prefecture, Japan
project	
Implementing body of the	Tokyo Electric Generation Co., Inc.
project	
Implementing period	2017
Type of the project	Change of power plant operation
Specifications (before the	
project)	
Name of power plant	Nakazato Power Station
Name of river	Sato River
Type of power plant	Waterway type
Year of commission	2010
Maximum output (MW)	0.85
Maximum discharge	3.06
(m3/s)	
Effective head (m)	34.3
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Nakazato Power Station
project)	are the same as those before the project except for annual
,	power production. The amount of water intake was increased
	by improving intake control.
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	2017
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	0.051
production (GWh)	
Overview of the project	Nakazato Power Station started operation in 1908. It was renewed in 2010 with a maximum output of 0.85MW and
	without changing maximum discharge of 3.06m3/s.
	The water intake discharge for power generation must be
	operated below the maximum approved value, and the intake
	gate adjusts the water intake to keep the water intake level
	below the maximum approved value. In the current gate
	control, the constant level control is performed based on the
	monitoring of channel water level corresponding to the upper and lower limit. Because the width between the upper and
	lower limits is set to have a margin, an overflow from intake
	weir is allowed, resulting in energy loss. Therefore, advanced
	water intake control was introduced in the Nakazato Power
	Station to reduce overflow and increase annual power
	production.

Improvement of	
performance	
Increase in output	No
Increase in power	Annual power production was increased due to the
production	improvement of intake operation.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	Advanced and automated intake gate control
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	III-2 Optimized operation of reservoir/power plant
development type	
Requirement A:	N/A
Effective use of water	
resources	
B: Improved and/or	Technically, water intake control was improved, and annual
advanced	power production was increased.
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to market needs	
Others	N/A
References	[1] Patent No. 6586480 "Water Volume Control Controllers
	and Systems" September 30, 2019. (Japan)

Project code	JP115
Name of the project	New construction of Kaminojiri No.2 Power Station
Location/country of the	Fukushima Prefecture, Japan
project	
Implementing body of the	Tohoku Electric Power Co., Inc.
project	
Implementing period	2002
Type of the project	New Construction
Specifications (before the	
project)	
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	-
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	-
production (GWh)	
Specifications (after the	Note: Kaminojiri No.2 Power Station was newly constructed to
project)	expand the existing Kaminojiri Power Station.
Name of power plant	Kaminojiri No.2 Power Station
Name of river	Agano River
Type of power plant	Dam type
Year of commission	2002
Maximum output (MW)	13.5
Maximum discharge	100
(m3/s)	
Effective head (m)	15.54
Annual power	44.4
production (GWh)	
Overview of the project	Power stations installed in a cascade in the Agano River
	System make the best use of abundant water volume and
	hydraulic head. However, there was an imbalance in the scale
	of power generation facilities due to the difference in development year. Kaminajiri No 2 Power Station was newly
	development year. Kaminojiri No.2 Power Station was newly
	constructed using effectively the unused water at the existing Kaminojiri Power Station. Kaminojiri No.2 is a dam-type power
	station (maximum discharge 100m3/s, effective head 15.54m,
	maximum output 13.5MW) and has a vertical bulb turbine
	installed at the place with less topographical restrictions and
	reduced civil work. This new type of turbine is applicable to
	effectively utilize river water and increase power output at
	other sites.
Improvement of	
performance	
Increase in output	Maximum output was increased by the construction of a new
	power station.

Increase in power	Annual power production was increased by the increase in
production	output. The power stations downstream increased power
	production due to high water level operations.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	A vertical bulb turbine with a big runner radius and decreased
	runner blades was developed. The vortex protection
	measures were taken against the suction vortex at the
	entrance of the turbine.
Cost	The adoption of a vertical bulb turbine reduced civil work and
	maintenance costs.
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	Effective utilization of unused potential in the river
Effective use of water	
resources	
B: Improved and/or	By matching the maximum discharge of upstream and
advanced	downstream power stations, the imbalance of water discharge
methodologies	was eliminated. Downstream regulating pondage was able to
	operate at high water levels to increase power production.
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Electric Power Civil Engineering, No.286, 2000.3 and
	No.301, 2002.9. (In Japanese)
	[2] Overview of Kaminojiri No.2 Power Station,
	https://www.tohoku-epco.co.jp/whats/news/2002/20606a.htm

Project code	JP116
Name of the project	Expansion of Nakatsugawa No.2 Power Station
Location/country of the	Niigata Prefecture, Japan
project	
Implementing body of the	Tokyo Electric Power Co. Holdings, Inc.
project	Tokyo Electrici Tower Oo. Holdings, me.
Implementing period	2001 – 2002
Type of the project	Expansion
Specifications (before the	
project)	
Name of power plant	Nakatsugawa No.2 Power Station (Unit 1)
Name of river	Nakatsu River
Type of power plant	Dam type
Year of commission	1994
Maximum output (MW)	20.7
Maximum discharge	13.91
(m3/s) Effective head (m)	171.25
Annual power	N/A
production (GWh)	Note: On a ifications of the aviation Notestavanus No. 9 Deven
Specifications (after the	Note: Specifications of the existing Nakatsugawa No.2 Power
project)	Station (Unit 1) are the same as those before the project. Unit
	2 of the power station was newly constructed.
Name of power plant	Nakatsugawa No.2 Power Station (Unit 2)
Name of river	Nakatsu River
Type of power plant	Dam type
Year of commission	2002
Maximum output (MW)	1.8
Maximum discharge	12.66
(m3/s)	
Effective head (m)	17.54
Annual power	7.6
production (GWh)	
Overview of the project	Nakatsugawa No.2 Power Station, located in the southern
	part of Niigata prefecture, started operation in 1922. It was
	renewed in 1994 with a maximum output of 20.7MW and a
	maximum discharge of 13.91m3/s. Expansion of
	Nakatsugawa No.2 Power Station was implemented in 2001 -
	2002 to increase maximum output by 1.8MW by utilizing the
	unused hydraulic head of 19.47m between the existing Ketto
	regulating pondage and energy-dissipation basin in the middle
	of the waterway of Nakatsugawa No.2 Power Station. Ketto
	dam re-regulates the generated water from unit 4 of the
	existing Nakatsugawa Power Station, and the water from units
	1 to 3 goes directly into the headrace of Nakatsugawa No.2
	Power Station. Newly installed unit 2 of Nakatsugawa No.2
Improvement of	also has a role in adjusting water supply to the power station.
performance	

Increase in output	Maximum output was increased by the newly installed turbine
	and generator using the unused potential at the existing re-
	regulating dam.
Increase in power	Annual power production was increased by the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	
Cost	
Environmental	Countermeasures against the noise from construction work
conservation	were conducted to consider the birds of prey.
Legal restriction	
Others	Construction work was conducted to consider the operation of
	the existing power station.
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	Unused hydraulic heads and discharge at the existing re-
Effective use of water	regulating dam were effectively used.
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Electric Power Civil Engineering, No.306, 2003.7. (In
	Japanese)

Project code	JP117
Name of the project	Redevelopment of Yukawa Power Station
Location/country of the	Nagano Prefecture, Japan
project	Nagano Freiecture, Japan
Implementing body of the	Tokyo Electric Power Co. Holdings, Inc.
project	Tokyo Electric Power Co. Holdings, inc.
Implementing period	1994 – 1997
Type of the project	Redevelopment
Specifications (before the	Redevelopment
project)	
Name of power plant	Yukawa Power Station
Name of river	Sai River, Yukawa River, Hannokizawa River, Sepa River and
Name of men	Kurahorasawa River
Type of power plant	Waterway type
Year of commission	1928
Maximum output (MW)	6
Maximum discharge	3.45
(m3/s)	0.70
Effective head (m)	222.12
Annual power	47
production (GWh)	47
Specifications (after the	
project)	
Name of power plant	Yukawa Power Station
Name of river	Sai River, Yukawa, Hannokizawa River and Sepa River
Type of power plant	Waterway type
Year of commission	1997
Maximum output (MW)	17.4
Maximum discharge	9
(m3/s)	
Effective head (m)	227.57
Annual power	60
production (GWh)	
Overview of the project	The redevelopment of Yukawa Power Station increased the
	maximum output from 6MW to 17.4 MW by increasing the
	intake of water from the mountain stream and expanding the
	capacity of Sepa regulating pondage. Maximum discharge
	was increased from 3.45m3/s to 9.0m3/s. Because the project
	site was located in the national park area, the existing power
	facilities such as the intake weir were utilized as much as
	possible and the existing exposed penstock and power house
	were replaced at their current sites to minimize environmental
	impacts,
Improvement of	
performance	
Increase in output	Maximum output was increased by utilizing the unused
	potential in the river.
Increase in power	Annual power production was increased by the increase in
production	output.
Reliability/flexibility	N/A

Others	N/A
Challenges in the project	
Technology	N/A
Cost	N/A
Environmental	Forest conservation, Landscape consideration and ecological
conservation	flow release
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	Increase in water discharge by using unused mountain stream
Effective use of water	waterflow.
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs Others	N/A
References	[1] Electric Power Civil Engineering, No.258, 1995.7. (In Japanese)

Project code	JP118
Name of the project	New construction of Yabukami No.2 Power Station
Location/country of the	Niigata Prefecture, Japan
project	Nigata i felecture, bapan
Implementing body of the	Tohoku Electric Power Co.,Inc.
project	
Implementing period	2013 - 2016
Type of the project	New Construction
Specifications (before the	
project)	
Name of power plant Name of river	-
	-
Type of power plant Year of commission	
	-
Maximum output (MW)	-
Maximum discharge	
(m3/s) Effective head (m)	
	-
Annual power	-
production (GWh)	Neter Vehidemi Ne O Deven Otation was nevely see the stad
Specifications (after the	Note: Yabukami No.2 Power Station was newly constructed to
project)	expand the existing Yabukami Power Station.
Name of power plant	No.2 Yabukami Power Station
Name of river	Aburuma River
Type of power plant	Dam type
Year of commission	2016
Maximum output (MW)	4.5
Maximum discharge	30
(m3/s)	
Effective head (m)	17.85
Annual power	18.25
production (GWh)	
Overview of the project	Yabukami No.2 Power Station was a dam-type hydropower
	station newly constructed on the right bank of Yabukami Dam,
	which is an intake dam of the existing Yabukami Power
	Station using a maximum discharge of 30m3/s. Because the
	maximum discharge of the upstream existing Kuromatagawa
	No.1 Power Station was 42.4m3/s, the water overflowed at
	Yabukami Dam for more than 300 days a year. Yabukami
	No.2 Power Station was expected to use this unused overflow for power generation.
Improvement of	
Improvement of performance	
	Maximum output was increased by the construction of a new
Increase in output	Maximum output was increased by the construction of a new power station using the overflow water from the existing dam.
Increase in power	Power production was increased by the increase in output.
production Reliability/floxibility	N/A
Reliability/flexibility	
Others	N/A

Challenges in the project	
Technology	N/A
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	Utilization of the unused spilled water at the existing dam
Effective use of water	
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Tohoku Electric Power Co., Inc. Press Release
	https://www.tohoku-epco.co.jp/pastnews/normal/
	1192130_1049.html
	https://www.tohoku-epco.co.jp/pastnews/normal/
	icsFiles/afieldfile/2016/06/23/b1192130.pdf

Project code	JP119
Name of the project	Renewal of Azumi Power Station
Location/country of the	Nagano Prefecture, Japan
project	5 / 1
Implementing body of the	Tokyo Electric Power Co. Holdings, Inc.
project	, , , , , , , , , , , , , , , , , , ,
Implementing period	1992
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Azumi Power Station
Name of river	Azusa River
Type of power plant	Dam type (Unit 1 & 2)
	Dam and Conduit type (Unit 3 to 6)
Year of commission	1969
Maximum output (MW)	623
	(412MW for pumped storage generation by Unit 3 to 6)
	(211MW for natural flow generation by Unit 1&2)
Maximum discharge	540
(m3/s)	(27m3/s for natural flow generation by Unit 1&2)
Effective head (m)	135.78 for Unit 1&2/
	134.86 for Unit 3 to 6
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Azumi Power Station are
project)	the same as those before the project except annual power
	production. The amount of intake water was increased by
	water diversion from the Midono River.
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	-
Maximum output (MW)	-
Maximum discharge	
(m3/s)	
Effective head (m)	-
Annual power	Increased by 12GWh
production (GWh)	
Overview of the project	Azumi Power Station is a mixed-type pumped storage power
	station using Nagawado Dam as upper reservoir and Midono
	Dam as lower reservoir, consisting of two types of units: dam
	type (unit 1 and 2 for natural flow power generation of
	211MW) and dam and waterway type (unit 3 to 6 for pumped
	storage power generation of 412MW). In 1992, a new intake
	weir was constructed upstream of Midono River, which flows into Midono Dam, to divert water to Nagawado Dam. This
	diversion increased water discharge used at the Azumi Power
	Station for natural flow power generation without affecting
	power generation at the downstream Midono Power Station.
	power generation at the downsiteant middlion ower Station.

Improvement of	
performance	
Increase in output	No
Increase in power	Annual power production was increased by diverting river
production	water from another river basin.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	N/A
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	I-4 Renewal of civil engineering facilities
development type	III-2 Optimized operation of reservoir/power plant
Requirement A:	Increase of water discharge by diverting river water from
Effective use of water	another river basin
resources	
B: Improved and/or	Water diversion from another river basin increased water
advanced	discharge used at the power station without affecting power
methodologies	generation at the downstream power station.
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Tunnel Engineering Study Group Presentation, Papers and
	Reports, Vol.1, 1991.12.

Project code	JP120
Name of the project	Operational change of power stations in Kurobe River basin
Location/country of the	Toyama Prefecture, Japan
project	royana rolootare, bapan
Implementing body of the	Kansai Electric Power Co., Inc.
project	
Implementing period	2019 -
Type of the project	Change of power plant operation
Specifications (before the	
project)	
Name of power plant	Power stations in the Kurobe River basin
Name of river	Kurobe River
Type of power plant	
Year of commission	1936 – 2015
Maximum output (MW)	906.7 (Total of 12 PS with 0.5MW - 335MW)
Maximum discharge	1.7 - 74.0
(m3/s)	1.7 - 74.0
Effective head (m)	34.5 - 545.5
Annual power	34.0 - 545.5 3470 (Total of 12 PS averaged in 2015 - 2016)
production (GWh)	5470 (10tal 01 12 FS averaged 11 2015 - 2010)
Specifications (after the	Note: Specifications of the existing 12 power stations in the
project)	Kurobe River basin are the same as those before the project
project	except for annual power production. Improvements in the
	power station operations were investigated and verified in
	2019.
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	2019 -
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	An increase by more than 1% (40 GWh) is expected.
production (GWh)	
Overview of the project	With the aim of increasing the power generation of existing
	hydropower stations by optimizing their operations,
	technological development has been conducted to improve
	dam inflow forecasting and optimize power station operations
	by combining weather observation and forecasting
	technology, snow accumulation and snowmelt models,
	rainfall-runoff prediction models, information network
	technology, and optimization calculation methods. These
	technologies were verified using the Kurobe River basin,
	where 12 power stations are located and snowfall accounts
	for more than half of the annual precipitation, as a model site,
	and the results showed that it is possible to increase annual
	power generation by more than 1% (40 GWh). This project
	was adopted by the New Energy and Industrial Technology

	Development Organization (NEDO), a national research and
	development corporation, as a publicly solicited project.
Improvement of	
performance	
Increase in output	No
Increase in power	It is possible to increase annual power generation by more
production	than 1% (40 GWh) by optimizing power station operations.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	Technological development has been conducted to improve dam inflow forecasting and optimize power station operations by combining weather observation and forecasting technology, snow accumulation and snowmelt models, rainfall-runoff prediction models, information network
0 4	technology, and optimization calculation methods.
Cost	This project was adopted by the New Energy and Industrial Technology Development Organization (NEDO) as a publicly solicited project.
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	III-2 Optimized operation of reservoir/power plant
development type	
Requirement A:	Decrease of spilled water at dams and effective use of water
Effective use of water	for power generation by optimizing power station operations in
resources	river basin
B: Improved and/or	Technological development has been conducted to improve
advanced	dam inflow forecasting and optimize power station operations
methodologies	by combining weather observation and forecasting
	technology, snow accumulation and snowmelt models,
	rainfall-runoff prediction models, information network
	technology, and optimization calculation methods.
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	 [1] Kansai Electric Power Press Release https://www.kepco.co.jp/corporate/pr/2018/0918_2j.html [2] Electric Power Civil Engineering, No.409., 2020.9. (In Japanese)

Project code	JP121
Name of the project	New construction of Akiba No.3 Power Station
Location/country of the	Shizuoka Prefecture, Japan
project	
Implementing body of the	Electric Power Development Co., Ltd.
project	
Implementing period	1988 - 1991
Type of the project	New Construction
Specifications (before the	
project)	
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	-
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	-
production (GWh)	
Specifications (after the	Note: Akiba No.3 Power Station was newly constructed to
project)	expand the existing Akiba No.1 and No.2 Power Stations.
Name of power plant	Akiba No.3 Power Station
Name of river	Tenryu River
Type of power plant	Dam and waterway type
Year of commission	1991
Maximum output (MW)	45.3 (Large turbine)
	1.6 (Small turbine for river ecological flow power generation)
Maximum discharge	110 (Large turbine
(m3/s)	6 (Small turbine))
Effective head (m)	47.1 (Large turbine)
	32.9 (Small turbine)
Annual power	96 (Total of large and small turbines)
production (GWh)	The encount of water flowing into the existing Abile Daw
Overview of the project	The amount of water flowing into the existing Akiba Dam exceeded the total amount of water used by the existing Akiba
	No.1 and No.2 power stations (both started operation in
	1958), which took water from the Akiba Dam, resulting in an
	overflow from the dam about 100 days per year. In order to
	utilize this spilled water for power generation effectively, the
	Akiba No.3 power station was newly constructed in 1991. The
	water intake for the No.3 power station uses the water intake facilities of the existing No.1 power station located on the right
	bank of the Akiba Dam, and the penstock was installed in the
	dam body after concrete excavation by drilling. The power
	house was constructed just below the dam. The water intake
	is divided into a large turbine (110 m3/s) and a small turbine
	(6 m3/s) for the ecological flows power generation. The water
	used by the large turbine is discharged through a 3.6km long
	tailrace tunnel to an existing regulating reservoir downstream.

	At the same time, the water used by the small turbine is discharged just below the dam.
Improvement of	
performance	
Increase in output	Maximum output was increased by the construction of a new
	power station.
Increase in power	Annual power production was increased by 96GWh due to the
production	increase in output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	An intake facility was constructed in the dam body after
	concrete excavation by drilling.
Cost	Received subsidy for 10% of construction cost.
Environmental	Ecological flow discharge from the dam was minimized within
conservation	the acceptable limits in the negotiation with the river
	management administrator from an economic viewpoint.
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	The new power station utilizes the spilled water from dam
Effective use of water	effectively by the large turbine and the ecological flow
resources	discharge by the small turbine.
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to market needs	
Others	N/A
References	[1] Electric Power Civil Engineering, No.215, 1963.7 (In
	Japanese)
	[2] Electric Power Civil Engineering, No.221, 1989.7 (In
	Japanese)

Project code	JP122
Name of the project	Operational change of Asaida Dam for power generation
Location/country of the	Gifu Prefecture, Japan
project	
Implementing body of the	Hokuriku Electric Power Co., Ltd.
project	
Implementing period	2019 -
Type of the project	Change of power plant operation
Specifications (before the	
project)	
Name of power plant	Higashimachi Power Station
Name of river	Jinzuu River
Type of power plant	Dam & waterway type
Year of commission	1942
Maximum output (MW)	32.8
Maximum discharge	47
(m3/s)	
Effective head (m)	80.5
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Higashimachi Power
project)	Station are the same as those before the project except for
	annual power production. Improvement of the intake dam
	operation has been implemented since 2019.
Name of power plant	-
Name of river	-
Type of power plant Year of commission	- 2019 -
Maximum output (MW) Maximum discharge	-
(m3/s)	
Effective head (m)	
Annual power	Increased by about 3% (5GWh)
production (GWh)	
Overview of the project	In order to optimize hydropower plant operation, Hokuriku
	Electric Power Company has developed a prediction model
	for the inflow to a dam reservoir in collaboration with JFE
	Engineering Corporation. The model is constructed based on
	the learning of meteorological and hydrological data observed
	at the dam using the artificial intelligence software developed
	by JFE Engineering Corporation. Since 2019, Hokuriku
	Electric Power Company has introduced the model at Asaida
	Dam in Jinzuu River, which is an intake dam for Higashimachi
	Power Station with a capacity of 32.8MW. It was confirmed
	that the inflow to the dam could be predicted with high
	accuracy compared with the traditional physical prediction
	model. The new prediction model makes it possible to recover water elevation at the dam more quickly after the high run-off
	by saving water release from the dam and increasing annual
	power production by about 3% (5GWh).

Improvement of	
performance	
Increase in output	No
Increase in power	Annual power production was increased by optimizing water
production	release from the dam.
Reliability/flexibility	Inflow prediction model using AI technology can improve its
Kenability/liexibility	reliability by additional learning of meteorological and
	hydrological data observed at the dam after its
	commencement of operation.
Others	N/A
Challenges in the project	The viver flow we disting model wing estimated intelligence
Technology	The river flow prediction model using artificial intelligence
	technology has been verified at many sites in Japan.
	However, the prediction of inflow to hydropower reservoir and
	the optimization of power station operation is a challenge. For
	further application, this model should improve its reliability for longer-term prediction and be applied to a series of power
Cost	plants in the river system. N/A
Environmental	N/A
conservation	N/A
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	III-2 Optimized operation of reservoir/power plant
development type	In-2 Optimized operation of reservoir/power plant
Requirement A:	Annual power production was increased by optimizing water
Effective use of water	release from the dam.
resources	
B: Improved and/or	Optimization of hydropower dam operation and increase of
advanced	annual power production by introducing an inflow prediction
methodologies	model with high accuracy using artificial intelligence
	technology.
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Hokuriku Electric Power Company and JFE Engineering
	Corporation: News Release, 12 June, 2020.
	http://www.rikuden.co.jp/press/attach/200612001.pdf
	[2] JFE Engineering Corporation: Real-time Flood Forecasting
	System Using AI Technology "WinmuSe(R) Caesar", Feb.
	2011.
	https://www.jfe-steel.co.jp/research/giho/027/pdf/027-20-2.pdf
	[3] Electric Power Civil Engineering, No.422, 2022.11 (In
	Japanese)

Project code	LA101
Name of the project	Expansion of Nam Ngum 1 Power Station
Location/country of the	Vientiane Province, Laos
project	
Implementing body of the	Électricité du Laos
project	
Implementing period	2017 – 2021
Type of the project	Expansion
Specifications (before the	
project)	
Name of power plant	Nam Ngum 1 Power Station
Name of river	Nam Ngum River
Type of power plant	Dam type
Year of commission	1971
Maximum output (MW)	155
Maximum discharge	462.1
(m3/s)	
Effective head (m)	37
Annual power	NA
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Nam Ngum 1 Power Station
Name of river	Nam Ngum River
Type of power plant	Dam type
Year of commission	2021
Maximum output (MW)	195
Maximum discharge	573.3
(m3/s)	
Effective head (m)	40
Annual power	NA
production (GWh)	
Overview of the project	A new 40MW unit was added to the existing Nam Ngum 1
	Power Station to meet the rapidly increasing electricity
	demand in Laos. Expansion construction includes the intake
	facility that was installed by drilling a hole in the concrete-
	gravity dam body of Nam Ngum Dam and an additional unit
	was installed in the expanded power station. The expansion
	increased the peak-power supply and improved the reliability
	and flexibility of the existing power station.
Improvement of	
performance	
Increase in output	Maximum output was increased by the expansion of power
	unit.
Increase in power	No
production	
Reliability/flexibility	Peak power supply was increased with the increase of
	maximum output.
Others	NA

Challenges in the project	
Technology	An intake facility and penstock was installed by drilling a hole
	in the concrete-gravity dam body.
Cost	NA
Environmental	NA
conservation	
Legal restriction	NA
Others	NA
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-2 Development without using unused potential
development type	
Requirement A:	NA
Effective use of water	
resources	
B: Improved and/or	NA
advanced	
methodologies	
C: Improvement of	Increased peak-power supply meets the needs of the power
reliability/flexibility	market and improves the reliability and flexibility of the
corresponding to	existing power station.
market needs	
Others	NA
References	[1] Electric Power Civil Engineering, No.391, 2017.9. (In
	Japanese)

Project code	PH101
Name of the project	New construction of Maris Main Canal 1 Power Station
Location/country of the	Isabela, Philippines
project	
Implementing body of the	SN Aboitiz Power-Magat, Inc.
project	
Implementing period	2016 – 2017
Type of the project	New Construction
Specifications (before the	
project)	
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	-
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	-
production (GWh)	
Specifications (after the	Note: Maris Main Canal 1 Power Station was newly
project)	constructed using the re-regulating dam for the existing Magat
	Power Station.
Name of power plant	Maris Main Canal 1 Power Station
Name of river	Maris River
Type of power plant	Dam type
Year of commission	2017
Maximum output (MW)	8.5
Maximum discharge	NA
(m3/s)	
Effective head (m)	12.05
Annual power	45
production (GWh)	
Overview of the project	Maris Power Station was newly constructed at Maris re-
	regulating dam for the existing Magat Power Station. It uses
	the unused generated flow from Magat Power Station and the
	hydraulic head from Maris Dam to Maris Irrigation Canal. Two units of Kaplan turbines (4.25MW/unit) were installed.
Improvement of	
performance	
Increase in output	Maximum output was increased by the construction of a new
	power station.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	NA
Others	NA
Challenges in the project	
Technology	NA
Cost	NA

Environmental	NA
conservation	
Legal restriction	NA
Others	NA
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	Effective utilization of the unused discharge and hydraulic
Effective use of water	head at the existing re-regulating dam
resources	
B: Improved and/or	NA
advanced	
methodologies	
C: Improvement of	NA
reliability/flexibility	
corresponding to	
market needs	
Others	NA
References	[1] SN Power Maris Canal
	https://www.snpower.com/our-markets/philippines/
	maris-canal/
	[2] Aboitiz Power 2017
	https://aboitizpower.com/history/2017/

Project code	VN101
Name of the project	New construction of Thac Mo Power Station
Location/country of the	Binh Phouc, Vietnam
project	
Implementing body of the	Vietnam Electricity
project	Violian Lioonory
Implementing period	2006 – 2014
Type of the project	New Construction
Specifications (before the	
project)	
Name of power plant	Thac Mo Power Station
Name of river	Be River
Type of power plant	Dam and waterway type
Year of commission	1995
Maximum output (MW)	150
Maximum discharge	186
(m3/s)	
Effective head (m)	90
Annual power	689
production (GWh)	009
Specifications (after the	
project)	
Name of power plant	Thac Mo Power Station
Name of river	Be River
Type of power plant	Dam and waterway type
Year of commission	2014
Maximum output (MW)	225
Maximum discharge	279
(m3/s)	
Effective head (m)	90
Annual power	741
production (GWh)	
Overview of the project	Thac Mo Power Station was commissioned in 1995 with a
	maximum output of 150MW. However, the actual inflow into
	the dam was larger than estimated at the time of planning, so
	a new intake facility from the existing dam, penstock,
	powerhouse, and tailrace were constructed, and a 75MW
	generating unit was added.
Improvement of	
performance	
Increase in output	Maximum output was increased by expansion.
Increase in power	Annual power production was increased by the increased
production	output.
Reliability/flexibility	NA
Others	NA
Challenges in the project	
Technology	NA
Cost	NA

Environmental conservation	NA
Legal restriction	NA
Others	NA
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	Effective utilization of the unused inflow at the existing intake
Effective use of water	dam by expansion
resources	
B: Improved and/or	NA
advanced	
methodologies	
C: Improvement of	NA
reliability/flexibility	
corresponding to	
market needs	
Others	NA
References	[1] Electric Power Civil Engineering, No.382, 2016.3, No.388,
- Kelerences -	2017.3 and No.393, 2018.1. (In Japanese)

Project code	AS101
Name of the project	New construction of Obervermuntwerk II Pumped Storage
	Power Station
Location/country of the	Gaschurn, Austria
project	
Implementing body of the	Illwerke Vkw AG
project	
Implementing period	2014 – 2019
Type of the project	New construction
Specifications (before the	
project)	
Name of power plant	Obervermuntwerk I Power Station
Name of river	N/A
Type of power plant	Dam & waterway type
Year of commission	1943
Maximum output (MW)	30
Maximum discharge	N/A
(m3/s)	
Effective head (m)	291
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Obervermuntwerk I Power
project)	Station are the same as those before the project.
Name of power plant	Obervermuntwerk II Pumped Storage Power Station
Name of river	N/A
Type of power plant	Pumped Storage
Year of commission	2019
Maximum output (MW)	360
Maximum discharge	150
(m3/s)	
Effective head (m)	291
Annual power	N/A
production (GWh)	
Overview of the project	Obervermuntwerk II Pumped Storage Power Station in Gaschurn, Austria uses a hydraulic head between Lake
	Silvretta, where the exisitng Obervermuntwerk I Power Station
	(reservoir-type hydropower station) is located and Lake
	Vermunt. A new waterway and power house were constructed
	underground considering landscape protection. Penstock for
	Obervermuntwerk I had been installed on the ground, but it
	was shifted underground and connected to new penstock at
	the time of construction of Obervermuntwerk II. It is expected that the new pumped storage power station will play a role in
	increasing peak power supply and stabilizing the power
	system.
Improvement of	
performance	
Increase in output	Maximum output was increased by the construction of a new
	pumped storage power station.

Increase in power	No
production	
Reliability/flexibility	Reliability and flexibility of the operation of the power station
	was improved by the new construction of a pumped storage
	power station.
Others	N/A
Challenges in the project	
Technology	The new pumped storage power station is classified as a
	"turnary system type" in which turbine, clutch,
	generator/electric motor, torque converter and pump are
	connected on the same axis, and "hydraulic short circuit"
	switches from pumping mode to generation mode and vice
	versa smoothly. It contributes to the stabilization of the power
	system.
Cost	N/A
Environmental	A new waterway and power house were constructed
conservation	underground considering landscape protection.
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-2 Development without using unused potential
development type	1-2 Development without doing undoed potential
Requirement A:	N/A
Effective use of water	
resources	
B: Improved and/or	N/A
advanced	
methodologies	Deals augusts according to a second and valiability and
C: Improvement of	Peak supply capacity was increased and reliability and
reliability/flexibility	flexibility for market needs were improved by the new
corresponding to	construction of a pumped storage power station.
market needs	
Others	N/A
References	[1] illwerke vkw
	https://www.illwerkevkw.at/obervermuntwerk-ii.htm

Project code	AU01
Name of the project	Renewal of Poatina Power Station
Location/country of the	Tasmania, Australia
project	
Implementing body of the	Hydro Tasmania
project	.,,
Implementing period	2006 – 2010
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Poatina Power Station
Name of river	Great Lake
Type of power plant	Dam & waterway type
Year of commission	1965
Maximum output (MW)	360
Maximum discharge	50
(m3/s)	
Effective head (m)	820
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Poatina Power Station
Name of river	Great Lake
Type of power plant	Dam & waterway type
Year of commission	2010
Maximum output (MW)	372
Maximum discharge	50
(m3/s)	
Effective head (m)	820
Annual power	N/A
production (GWh)	
Overview of the project	Hydro Tasmania modernized units at Poatina Power Station
	to improve generation efficiency and significantly improve
	plant performance, achieving a start reliability of 98% and an
	availability of 95%. This made it possible to increase
	maximum output by 12 MW (4 MW per unit x 3 units) without
	increasing maximum discharge and improve the frequency control function.
Improvement of	
performance	
Increase in output	Maximum output was increased by the renewal of the turbine
	and generator without increasing maximum discharge.
Increase in power	No
production	
Reliability/flexibility	Ancillary service of frequency control was provided by the
	renewal of the control device.
Others	N/A
Challenges in the project	

Technology	Improved inlet valve control and protection system reduced
	the risk of serious penstock hydraulic risk.
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	I-3 Renewal of electro-mechanical equipment adding new
development type	functions
Requirement A:	N/A
Effective use of water	
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	The frequency control function was improved by the renewal
reliability/flexibility	of the control device, which contributed to the reliability and
corresponding to	flexibility of the power station.
market needs	
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Au.01_Poatina
	https://www.ieahydro.org/media/5fb06b0d/
	Vol2_Case_History_English(409-598).pdf

Project code	AU102
Name of the project	New construction of Tods Corner Power Station
Location/country of the	Tasmania, Australia
project	
Implementing body of the	Hydro Tasmania
project	
Implementing period	1966
Type of the project	New construction
Specifications (before the	
project)	
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	-
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	-
production (GWh)	
Specifications (after the	Note: Tods Corner Power Station was newly constructed
project)	using the unused potential in the existing waterway.
Name of power plant	Tods Corner Power Station
Name of river	N/A
Type of power plant	Waterway type
Year of commission	1966
Maximum output (MW)	1.7
Maximum discharge	N/A
(m3/s)	
Effective head (m)	41
Annual power	8
production (GWh)	
Overview of the project	Arthurs Lake was created in the 1920s to increase the water
	available at Great Lake which is the largest lake in Tasmania
	and is used for power generation. Water is pumped up 140m
	from Arthurs Lake to a 5km flume. Tods Corner Power Station
	(1.7 MW) was commissioned in 1966 using the unused
	hydraulic head in the flume. It was intended to recover part of
	the energy used in pumping the water.
Improvement of	
performance	
Increase in output	Maximum output was increased by the construction of a new
	power station.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	N/A

Cost	MA
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	A small-scale hydropower station was newly constructed to
Effective use of water	effectively use the unused potential in the waterway for
resources	pumped-up water from Arthurs Lake to Great Lake.
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Hydropower & Dams Issue Three, 2003
	[2] The power of nature, Hydro Tasmania

Project code	BR01
Name of the project	Renewal of Estreito Power Station
Location/country of the	Pedregulho, São Paulo, Brazil
project	
Implementing body of	ELETROBRAS FURNAS
the project	
Implementing period	2007 – 2012
Type of the project	Renewal
Specifications (before	
the project)	
Name of power plant	Estreito Power Station
Name of river	Tocantins River
Type of power plant	Dam type
Year of commission	1969
Maximum output	1,050
(MW)	1,000
Maximum discharge	306.6
(m3/s)	500.0
Effective head (m)	65
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Estreito Power Station are
project)	the same as those before the project.
Name of power plant	
Name of river	
Type of power plant Year of commission	-
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	
Annual power	N/A
production (GWh)	
Overview of the project	FURNAS renewed the Estreito Power Station during 2007 -
- overview of the project	2012 because of the recurrence of malfunctions in units and
	auxiliary systems due to degradation and aging. FURNAS
	studied new materials and processes to repair the cavitation
	in Francis turbine blades and repaired them using the material
	"Cavitalloy". The cost of "Cavitalloy" is 30% greater than that
	of the stainless steel traditionally used. However, it was
	expected to improve the performance of units by increasing
	the resistance of cavitation and therefore reducing
	maintenance costs. A "pressurized air system" was
	implemented to lower the draft tube level, so that the units
	could operate as synchronous condensers, contributing to the
	stabilization of the power system,
Improvement of	
performance	
Increase in output	No

Increase in power	No
production	
Reliability/flexibility	The reliability and flexibility of the power station was improved by the implementation of a "pressurized air system" to operate the units as synchronous condensers.
Others	N/A
Challenges in the project	
Technology	The new material "Cavitalloy" was adopted for cavitation repair as the alternative material of stainless steel. The introduction of a "pressurized air system" can also reduce cavitation in the turbine by avoiding the "speed no load" mode operation.
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	I-1 Renewal of electro-mechanical equipment without changing intake discharge/hydraulic head I-3 Renewal of electro-mechanical equipment adding new functions
Requirement A: Effective use of water resources	N/A
B: Improved and/or advanced methodologies	The new material "Cavitalloy" was adopted for cavitation repair as the alternative material of stainless steel.
C: Improvement of reliability/flexibility corresponding to market needs	A "pressurized air system" was implemented to lower the draft tube level, so that the units could operate as synchronous condensers, contributing to the stabilization of the power system,
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Br.01_Estreito https://www.ieahydro.org/media/5fb06b0d/ Vol2_Case_History_English(409-598).pdf

Project code	CA101
Name of the project	Expansion of London Street Power Station
Location/country of the	Ontario, Canada
project	
Implementing body of the	Peterborough Utilities Inc.
project	
Implementing period	2014 – 2016
Type of the project	Expansion
Specifications (before the	
project)	
Name of power plant	London Street Power Station
Name of river	Otonabee River
Type of power plant	Dam type
Year of commission	1921
Maximum output (MW)	4
Maximum discharge	N/A
(m3/s)	
Effective head (m)	N/A
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	London Street Power Station
Name of river	Otonabee River
Type of power plant	Dam type
Year of commission	2016
Maximum output (MW)	10
Maximum discharge	N/A
(m3/s)	
Effective head (m)	N/A
Annual power	16 (additional)
production (GWh)	
Overview of the project	London Street Power Station was constructed in 1921 with a
	total capacity of 4MW by three Francis turbine units.
	Peterborough Utilities Inc. acquired the facility in 1975 and
	conducted an expansion of the existing power station by using the unused outflow from the intake dam in 2016. Two new
	Kaplan turbine units for a total capacity of 6MW were installed
	adjacent to the existing facilities, producing additional 16GWh
	annually.
Improvement of	
performance	
Increase in output	Maximum output was increased by an expansion of the
	existing power station.
Increase in power	Annual power production was increased by the increase in
production	output.
Reliability/flexibility	N/Å
Others	N/A
Challenges in the project	

Technology	N/A
Cost	Feed-in-tariff has been applied.
Environmental conservation	Construction of new facilities was conducted considering the avian nesting activity on the island where the power station is located and the appropriate timing for tree removal was determined along with documentation of the occurrence of avian nesting.
Legal restriction	
Others	
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-1 Development using unused potential
Requirement A: Effective use of water resources	New generation units were installed to effectively use the unused potential at the existing intake dam. Increase in power discharge increased maximum output and annual power production.
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] London Street Generating Station Expansion https://pub-peterborough.escribemeetings.com/ filestream.ashx?DocumentId=19178

Project code	CO101
Name of the project	Renewal of Salvajina Power Station
Location/country of the	Cauca, Colombia
project	
Implementing body of the	Celsia S.A. E.S.P.
project	
Implementing period	2017
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Salvajina Power Station
Name of river	Cauca River
Type of power plant	Dam Type
Year of commission	1985
Maximum output (MW)	285
Maximum discharge	300
(m3/s)	
Effective head (m)	N/A
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Salvajina Power Station
Name of river	Cauca River
Type of power plant	Dam Type
Year of commission	2017
Maximum output (MW)	315
Maximum discharge	350
(m3/s)	
Effective head (m)	N/A
Annual power	N/A
production (GWh)	
Overview of the project	The aged No.1 unit of Salvajina Power Station in Colombia
	was renewed in 2017 to increase maximum output by
	increasing maximum discharge. The existing water turbine
	had been designed for overload operation, but the generator
	and transformer had insufficient capacity. In addition, the
	generator was aging, causing frequent earth fault failures.
	Therefore, the generator, exciter and transformer were
	renewed.
Improvement of	
performance	Maximum output was increased by the renewal of evicting
Increase in output	Maximum output was increased by the renewal of existing
	power station.
Increase in power production	Annual power production was increased by the increase in output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	

Technology	N/A
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	I-2 Renewal of electro-mechanical equipment changing intake
development type	discharge
Requirement A:	The existing unit was renewed to effectively use the unused
Effective use of water	potential in the river by increasing maximum discharge.
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Repotenciación de la Unidad 1 de la central hidráulica
	Salvajina de la empresa Celsia E.S.P.
	https://educacion.aciem.org/CIMGA/2018/Trabajos/
	2018-063%20TRA_COL_L_ARBOLEDA_CIMGA2018.pdf

Project code	FI01
Name of the project	Renewal of Pirttikoski Power Station
Location/country of the	Rovaniemi district, Finland
project	
Implementing body of the	Kemijoki Oy
project	
Implementing period	2009 – 2010
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Pirttikoski Power Station
Name of river	Kemijoki River
Type of power plant	Dam & waterway type
Year of commission	1956
Maximum output (MW)	110
Maximum discharge	750
<u>(m3/s)</u>	
Effective head (m)	N/A
Annual power	551
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Pirttikoski Power Station
Name of river	Kemijoki River
Type of power plant	Dam & waterway type
Year of commission	2010
Maximum output (MW)	152
Maximum discharge	1050
(m3/s)	
Effective head (m)	N/A
Annual power production (GWh)	581
	The newer stations along the main shannel of the Kamijaki
Overview of the project	The power stations along the main channel of the Kemijoki River have been operated in close coordination with each
	other. The Pirttikoski Power Station is one of them and was
	constructed in 1959. The upgrading of the power stations on
	the Kemijoki River started in 1996, and at the Pirttikoski Rever Station, turbing and generators, automatic control
	Power Station, turbine and generators, automatic control, protection and hydraulic control systems, etc. were upgraded
	in 2009-2010. The maximum discharge used by the turbine
	was increased, and the maximum output was significantly
	increased. The frequency control reserve was also improved.
	The upgrading has optimized the operation of river system
	and power station.
Improvement of	
performance	
Increase in output	Maximum output was increased by the renewal and upgrade.
Increase in power	Power production was increased by the increase in power
production	output.
Reliability/flexibility	The frequency control reserve was improved.

Others	N/A
Challenges in the project	
Technology	N/A
Cost	N/A
Environmental	Environmentally friendly oil-free runner hubs were adopted in
conservation	the new turbines.
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	I-2 Renewal of electro-mechanical equipment changing intake
development type	discharge
	I-3 Renewal of electro-mechanical equipment adding new
	functions
	III-2 Optimized operation of reservoir/power plant
Requirement A:	The existing unit was renewed and upgraded to effectively
Effective use of water	use the unused potential in the river by increasing maximum
resources	discharge.
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	Reliability and flexibility were improved by increasing the
reliability/flexibility	frequency adjustment ability for the stabilization of the power
corresponding to	system.
market needs	
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Fi.01_Pirttikoski
	https://www.ieahydro.org/media/5fb06b0d/
	Vol2_Case_History_English(409-598).pdf

Project code	FR01
Name of the project	Renewal of Sisteron Power Station
Location/country of the	France
project	
Implementing body of the	EDF
project	
Implementing period	2011 – 2014
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Sisteron Power Station
Name of river	Durance River
Type of power plant	Dam and waterway type
Year of commission	1975
Maximum output (MW)	244
Maximum discharge	N/A
(m3/s)	
Effective head (m)	110
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Sisteron Power Station are
project)	the same as those before the project except annual power
	production.
Name of power plant	Sisteron Power Station
Name of river	Durance River
Type of power plant	Dam and waterway type
Year of commission	2014
Maximum output (MW)	244
Maximum discharge	N/A
(m3/s)	
Effective head (m)	110
Annual power	11.7 (additional)
production (GWh)	Olation Development the Development Direction and the effect
Overview of the project	Sisteron Power Station on the Durance River in south-east
	France was commissioned in 1975 with a total capacity of
	244MW by two Francis turbine units. After 35 years of operation, hydro-mechanical equipment showed serious signs
	of chronic problems that made plant operation restrictive and
	risky. Therefore, general refurbishment was carried out in
	2009-2014 to secure plant operation. A new runner was
	designed by CFD analysis, and the operation range of the
	turbine was extended by adopting an axial air supply system
	to the runner to increase annual power production.
Improvement of	
performance	
Increase in output	No
Increase in power	Annual power production was increased by the renewal.
production	
Reliability/flexibility	N/A
Others	N/A

Challenges in the project	
Technology	An axial air supply system to the runner was adopted to reduce pressure fluctuation of the draft tube at partial load operation and to extend the operation range of the turbine.
Cost	In order to minimize the loss of power generation during construction, the period of on-site works was managed to be shortened.
Environmental conservation	N/A
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	I-1 Renewal of electro-mechanical equipment without
development type	changing intake discharge/hydraulic head
Requirement A: Effective use of water resources	N/A
B: Improved and/or advanced methodologies	A new runner was designed by CFD analysis, and the operation range of the turbine was extended by adopting an axial air supply system to the runner to increase annual power production.
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History FR01: Sisteron https://www.ieahydro.org/media/5fb06b0d/ Vol2_Case_History_English(409-598).pdf

Subtask 2 case history data summary

Subtask 2 case history data su	
Project code	FR101
Name of the project	Expansion of La Centrale de Mathay Power Station
Location/country of the	Bourgogne-Franche-Comté, France
project	
Implementing body of the	Hydrocop
project	
Implementing period	2018 – 2019
Type of the project	Expansion
Specifications (before the	
project)	
Name of power plant	Mathay Power Station
Name of river	Doubs River
Type of power plant	Dam type
Year of commission	1912
Maximum output (MW)	1
Maximum discharge	N/A
(m3/s)	
Effective head (m)	N/A
Annual power	4.8
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Mathay Power Station
Name of river	Doubs River
Type of power plant	Dam type
Year of commission	2019
Maximum output (MW)	1.5
Maximum discharge	15.8 (expanded unit)
(m3/s)	
Effective head (m)	4.0 (expanded unit)
Annual power	6.1
production (GWh)	
Overview of the project	Mathay Power Station was commissioned in 1912 and has
	been repaired and remodeled many times to date. In 2019, a
	fish way was constructed at the existing intake dam and a
	new power unit of 500kW was installed at the fish way to
	increase power production.
Improvement of	
performance	
Increase in output	Maximum output was increased by the expansion of the
	existing power station using a fish way.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	A low-head turbine was installed on the fish way.
Cost	N/A

Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-1 Development using unused potential
Requirement A: Effective use of water resources	Effective utilization of unused potential in the fish way of existing intake dam.
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	 [1] Hydrocop_Augmentation de puissance centrale de Mathay et confortement du barrage. http://www.hydrocop.fr/ m-120-augmentation-de-puissance-centrale-de-mathay-et- confortement-du-barrage-25-mathayhtml [2] MJ2 Technologies News Letter No. 72 May 2019 http://www.vlh-turbine.com/wp-content/ uploads/2019/06/17NL interattivo 72dpi.pdf

Project code	IC101
Name of the project	Renewal of Búrfell Power Station
Location/country of the	Búrfellsstöð, Iceland
project	
Implementing body of the	Landsvirkjun
project	
Implementing period	1997 – 1999
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Búrfell Power Station
Name of river	Thjórsá river
Type of power plant	Dam and waterway type
Year of commission	1972
Maximum output (MW)	210
Maximum discharge	N/A
(m3/s)	
Effective head (m)	115
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Búrfell Power Station
Name of river	Thjórsá River
Type of power plant	Dam and waterway type
Year of commission	1999
Maximum output (MW)	270
Maximum discharge	260
(m3/s)	
Effective head (m)	115
Annual power	2300
production (GWh)	
Overview of the project	Burfell Power Station is located in South Iceland and was
	commissioned in 1972 with a total capacity of 210MW by six
	Francis turbines. All of the turbines were upgraded in 1997-98
	to increase the total capacity by 60MW by increasing
	maximum discharge and reducing the amount of ice flowing
	into the intake reservoir.
Improvement of performance	
Increase in output	Maximum output was increased by the renewal of the existing
increase in output	power station.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	N/A
Cost	N/A
0051	

E su discussion de l	
Environmental	N/A
conservation	
Legal restriction	N/A
Others	Prevention of ice inflow into the intake reservoir
Characteristics regarded	
as "Hidden Hydro"	
Classification of	I-2 Renewal of electro-mechanical equipment changing intake
development type	discharge
Requirement A:	Effective utilization of unused potential in the river by
Effective use of water	increasing maximum discharge and reducing the amount of
resources	ice flowing into the intake reservoir.
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Búrfell Power Station
	https://www.landsvirkjun.com/
	company/powerstations/burfellpowerstation
	[2] Búrfell Hydropower Station
	https://www.landsvirkjun.com/
	media/enska/operations/Additional%20Information.pdf

Project code	IC102
Name of the project	New construction of Búrfell II Power Station
Location/country of the	Búrfellsstöð, Iceland
project	
Implementing body of the	Landsvirkjun
project	Landovingan
Implementing period	2016 – 2018
Type of the project	New construction
Specifications (before the	
project)	
Name of power plant	Búrfell Power Station
Name of river	Thjórsá River
Type of power plant	Dam and waterway type
Year of commission	1999
Maximum output (MW)	270
Maximum discharge	260
(m3/s)	
Effective head (m)	115
Annual power	2300
production (GWh)	2000
Specifications (after the	Note: Specifications of the existing Búrfell Power Station are
project)	the same as those before the project.
Name of power plant	Búrfell II Power Station
Name of river	Thjórsá River
Type of power plant	Dam and waterway type
Year of commission	2018
Maximum output (MW)	100
Maximum discharge	92
(m3/s)	32
Effective head (m)	120.7
Annual power	300
production (GWh)	000
Overview of the project	Burfell Power Station in South Iceland was commissioned in
	1972 and upgraded in 1999 with a total capacity of 270MW by
	increasing the maximum discharge up to 260 m3/s. However,
	even after the upgrading, river flows still far exceeded the
	power plant's maximum discharge, so a new 100MW Búrfell II
	Power Station was constructed in 2018 to utilize unused river
	water at the existing intake dam.
Improvement of	
performance	
Increase in output	Maximum output was increased by the construction of a new
	power station.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	N/A

Cost	N/A
Environmental	The powerhouse was built underground to minimize
conservation	environmental impacts.
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	II 1 Development using unused notential
Classification of	II-1 Development using unused potential
development type	A new newer station was constructed to effectively use the
Requirement A: Effective use of water	A new power station was constructed to effectively use the
resources	unused potential at the existing intake dam.
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Búrfell II Power Station
	https://www.landsvirkjun.com/
	company/powerstations/burfell-ii-power-station/
	[2] Andritz News on HPP Búrfell, Iceland
	https://www.andritz.com/hydro-en/hydronews/
	hy-hydro-news-30/hy-news-30-12-burfell-extension-iceland-
	hydro/pac-received-hpp-burfell

Project code	LX101
Name of the project	Expansion of Vianden Pumped Storage Power Station
Location/country of the	Vianden, Luxembourg
project	·······
Implementing body of the	Societe Electrique de l'Our
project	
Implementing period	2010 – 2014
Type of the project	Expansion
Specifications (before the	
project)	
Name of power plant	Vianden Pumped Storage Power Station
Name of river	Our River
Type of power plant	Pumped storage type
Year of commission	1962
Maximum output (MW)	1096
Maximum discharge	432.5
(m3/s)	
Effective head (m)	280
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Vianden Pumped Storage Power Station
Name of river	Our River
Type of power plant	Pumped storage type
Year of commission	2014
Maximum output (MW)	1291
Maximum discharge	510.7
(m3/s)	
Effective head (m)	280
Annual power	N/A
production (GWh)	
Overview of the project	Vianden Pumped Storage Power Station is located in
	Vianden, Luxembourg, and serves as a peak power plant. The
	first nine units were commissioned in 1964 with a total output
	of 900MW, and a 10th unit of 196MW was installed in 1976.
	To meet the increasing demand for peak energy, the plant
	capacity was further expanded in 2015 by installing an 11th
	unit of 195MW along with increasing the storage capacity of
	the existing upper and lower reservoirs by 500,000m3.
Improvement of	
performance	
Increase in output	Maximum output was increased by the expansion of the
	existing power station.
Increase in power	No
production	
Reliability/flexibility	The peak power supply was increased to improve the
	reliability and flexibility of the power station.
Others	N/A

Challenges in the project	
Technology	N/A
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-2 Development without using unused potential
development type	
Requirement A:	N/A
Effective use of water	
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	The peak power supply was increased to improve the
reliability/flexibility	reliability and flexibility of the power station.
corresponding to	
market needs	
Others	
References	[1] Societe electrique de l'Our
	http://www.seo.lu/fr/
	Activites-principales/PSW-Vianden/Installations [2] Pumped-storage power plant, Vianden
	[2] Pumped-storage power plant, vlanden https://benelux.rwe.com/en/
	locations/vianden-pumped-storage-power-plant/

Project code	MW101
Name of the project	New construction of Tedzani IV Power Station
Location/country of the	Blantyre Province, Malawi
project	
Implementing body of the	Electricity Generation Company Malawi Limited
project	
Implementing period	2014 – 2021
Type of the project	New construction
Specifications (before the	
project)	
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	-
Maximum output (MW)	-
Maximum discharge	• · · · · · · · · · · · · · · · · · · ·
(m3/s)	
Effective head (m)	-
Annual power	-
production (GWh)	
Specifications (after the	Note: Tedzani IV Power Station was newly constructed using
project)	the unused potential at the existing dam.
Name of power plant	Tedzani IV Power Station
Name of river	Shire River
Type of power plant	Waterway type
Year of commission	2021
Maximum output (MW)	19
Maximum discharge	58.5
(m3/s)	
Effective head (m)	37
Annual power	N/A
production (GWh)	
Overview of the project	In Malawi's Shire River, hydropower stations have been
	developed in stages since the Tedzani I Power Station of
	20MW was completed in 1973. The 4th, Tedzani IV, was built
	in 2021 as a new 18MW power station using the overflow from
	the intake dam of the existing power stations.
Improvement of	
performance	
Increase in output	Maximum output was increased by the construction of a new power station.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	N/A
Cost	The project was funded by the Japan International
	Cooperation Agency and the Government of Malawi.

Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	A new power station was constructed to effectively use the
Effective use of water	unused potential at the existing dam.
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] JICA ODA, The Project for Expansion of Tedzani Electricity
	Hydropower Station
	https://www.jica.go.jp/oda/project/1460570/index.html

Project code	NW01
Name of the project	Redevelopment of Embretsfoss IV Power Station
Location/country of the	Buskerud County, Norway
project	- ,, ,
Implementing body of the	EB Kraftproduksjon AS
project	
Implementing period	2010 – 2013
Type of the project	Redevelopment
Specifications (before the	
project)	
Name of power plant	Embretsfoss II Power Station
Name of river	Drammen River
Type of power plant	Dam type
Year of commission	1921 (abolished in 2013)
Maximum output (MW)	9
Maximum discharge	75
(m3/s)	
Effective head (m)	16.3
Annual power	110
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Embretsfoss IV Power Staion
Name of river	Drammen River
Type of power plant	Dam type
Year of commission	2013
Maximum output (MW)	52.5
Maximum discharge	N/A
(m3/s)	
Effective head (m)	16.3
Annual power	N/A
production (GWh)	
Overview of the project	There were two parallel power stations (Embretsfoss II and
	Embretsfoss III) at Embretsfoss, utilizing the same intake
	pond, and both had heads of approximately 16m. A dam
	across the river increased the natural head, and provided for a
	small intake pond. Embretsfoss II has been condemning the
	failures of civil facilities since 1921, and mechanical and
	electrical equipment had been worn with low efficiency.
	Embretsfoss III has been running since 1954, and it is still
	operating well and producing enough satisfaction. The owner,
	therefore, decided to build a new power station, Embretsfoss
	IV, to substitute Embretsfoss II, and maximum output was
	increased by utilizing the unused water resources. Regarding
	Embretsfoss III, it keeps its operation continuously.
Improvement of	
performance	
Increase in output	Maximum output was increased by the redevelopment of the
	abolished power station using the unused water resources.

Increase in newer	Power production was increased due to the increase in
Increase in power production	output.
	N/A
Reliability/flexibility	
Others	N/A
Challenges in the project	
Technology	A new power station (Embretsfoss IV) was constructed parallel with the operation of two existing power stations.
Cost	There was a requirement to secure profits for the effective utilization of river flow. The Norwegian- Swedish Electricity Certificate Market was introduced, which contributed to an incentive for the development of new renewable energy.
Environmental conservation	The Landscape and fish were preserved. Regarding fish, the conditions were improved through the establishment of adequate fish passages.
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	In Proverophient doing dhabed potential
Requirement A:	The abolished power station was redeveloped using unused
Effective use of water resources	potential.
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Nw.01_Embretsfoss #4 <u>https://www.ieahydro.org/media/5fb06b0d/</u> Vol2_Case_History_English(207-408).pdf

Project code	NW02
Name of the project	Renewal of Hemsil II Power Station
Location/country of the	Buskerud County, Norway
project	
Implementing body of the	E-CO Energi AS
project	
Implementing period	2005 – 2006
Type of the project	Renewal/upgrading
Specifications (before the	
project)	
Name of power plant	Hemsil II Power Station
Name of river	Hemsil River
Type of power plant	Dam and waterway type
Year of commission	1959
Maximum output (MW)	82
Maximum discharge	28
(m3/s)	
Effective head (m)	370
Annual power	503
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Hemsil II Power Station
Name of river	Hemsil River
Type of power plant	Dam and waterway type
Year of commission	2006
Maximum output (MW)	98
Maximum discharge	31
(m3/s)	
Effective head (m)	370
Annual power	537
production (GWh)	
Overview of the project	The turbines and generators of Hemsil II Power Station were
	renewed and upgraded. Renewal of turbines and generators
	was decided due to their aging. In addition to the efficiency
	increase by the renewal, maximum output was increased by
	increasing maximum discharge by 3m3/s within the
	acceptable range with minor environmental impact. After the
	renewal, annual power production was increased from 503
	GWh to 537GWh.
Improvement of	
performance	Maximum output was increased due to the increase of
Increase in output	Maximum output was increased due to the increase of
Increase in power	efficiency by renewal and the increase of maximum discharge. Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Chanenges in the project	

Technology	N/A
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	Maximum discharge was increased within the scope of current permission considering the environmental impact.
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	I-2 Renewal of electro-mechanical equipment changing intake
development type	discharge/hydraulic head
Requirement A:	Effective utilization of unused potential by renewal & upgrade
Effective use of water	of the existing power station.
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	
References	[1] IEA Hydro (2016) Annex 11, Case History Nw.02_Hemsil#2
	https://www.ieahydro.org/media/5fb06b0d/
	Vol2_Case_History_English(207-408).pdf

Name of the project New construction of Hemsil III Power Station Location/country of the project Buskerud County, Norway Implementing body of the project E-CO Energi AS Implementing period 2016 – 2019 Type of the project New construction Specifications (before the project) New construction Name of power plant Hemsil II Power Station Name of power plant Dam and waterway type Year of commission 2006 Maximum output (MW) 98 Maximum discharge (m3/s) 31 Effective head (m) 370 Annual power production (GWh) Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station. Name of power plant Dam and waterway type Year of commission 2019 Maximum discharge (m3/s) 370 Maximum output (MW) 83 Maxim	Project code	NW03
Location/country of the projectBuskerud County, NorwayImplementing body of the projectE-CO Energi ASImplementing period2016 – 2019Type of the projectNew constructionName of power plantHemsil II Power StationName of riverHemsil RiverType of power plantDam and waterway typeYear of commission2006Maximum output (MW)98Maximum output (MW)93Maximum discharge (m3/s)370Annual power production (GWh)Station is newly constructed as an expansion of the existing power station.Name of power plantNote: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil RiverType of power plantDam and waterway typeYear of commission 20192019Maximum discharge (m3/s)370Effective head (m) Annual power production (GWh)370Overview of the project41Hemsil II Power Station 2019Maximum discharge (m3/s)370Effective head (m) Annual power production (GWh)370Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish		
project Implementing body of the project E-CO Energi AS Implementing period 2016 – 2019 Type of the project New construction Specifications (before the project) New construction Name of power plant Hemsil II Power Station Maximum output (MW) 98 Maximum discharge (m3/s) 31 Effective head (m) 370 Annual power plant Note: Specifications of the existing Hemsil II Power Station is newly constructed as an expansion of the existing power station is newly constructed as an expansion of the existing power station. Name of power plant Hemsil II Power Station Name of river Hemsil River Type of power plant Note: Specifications of the existing Hemsil II Power Station is newly constructed as an expansion of the existing power station. Name of power plant Hemsil River Type of power plant Dam and waterway type Year of commission 2019 Maximum discharge (m3/s) 370 Effective head (m) 370 Annual power 91 production (GWh) 92 Overview of the project Hemsil II Power Station's maximum discharge and equipment were small against the river inflow. An expansion of H		Buskerud County, Norway
Implementing body of the projectE-CO Energi ASImplementing period2016 - 2019Type of the projectNew constructionSpecifications (before the project)New constructionName of power plantHemsil II Power StationName of riverDam and waterway typeYear of commission2006Maximum output (MW)98Maximum discharge (m3/s)31Effective head (m)370Annual power project)Annual power station is newly constructed as an expansion of the existing power station.Name of power plantNote: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantDam and waterway typeYear of commission 20192019Maximum output (MW) 8383Maximum discharge (m3/s)370Annual power sproduction (GWh)370Overview of the project91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, 01Maximum discharge (m3/s)370Annual power production (GWh)91Overview of the projectHemsil II Power Station sation was constructed 55 to 60 years ago, 01Overview of the projectUhe power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of th		, ,, ,
project 2016 - 2019 Implementing period 2016 - 2019 Type of the project New construction Name of power plant Hemsil II Power Station Name of power plant Dam and waterway type Year of commission 2006 Maximum discharge 31 (m3/s) 370 Annual power 537 production (GWh) Specifications of the existing Hemsil II Power Station Specifications (after the project) Note: Specifications of the existing Hemsil II Power Station is newly constructed as an expansion of the existing power station. Name of power plant Hemsil II Power Station Name of power plant Dam and waterway type Yze of commission 2019 Maximum duscharge (m3/s) 219 Maximum duput (MW) 83 Maximum duput (MW) 83 Maximum duput (MW) 83 Maximum duput (MW) 91 Overview of the project Hemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-S		E-CO Energi AS
Implementing period2016 – 2019Type of the projectNew constructionSpecifications (before the project)Hemsil II Power StationName of power plantHemsil RiverType of power plantDam and waterway typeYear of commission2006Maximum output (MW)98Maximum output (MW)98Maximum discharge (m3/s)370Annual power production (GWh)370Specifications (after the project)Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil III Power Station Hemsil RiverType of power plantDam and waterway typeYear of commission (m3/s)2019Maximum discharge (m3/s)25Effective head (m) Annual power production (GWh)370Overview of the projectBarnol Hemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and paralel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 5		
Type of the project New construction Specifications (before the project) Hemsil II Power Station Name of power plant Hemsil River Type of power plant Dam and waterway type Year of commission 2006 Maximum output (MW) 98 Maximum discharge 31 (m3/s) 537 Effective head (m) 370 Annual power 537 production (GWh) Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station. Name of power plant Hemsil River Type of power plant Dam and waterway type Yaar of commission 2019 Maximum output (MW) 83 Maximum discharge 25 (m3/s) 4 Effective head (m) 370 Annual power 91 production (GWh) 91 Overview of the project Hemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has there		2016 – 2019
Specifications (before the project)Hemsil II Power StationName of power plantHemsil RiverType of power plantDam and waterway typeYear of commission2006Maximum output (MW)98Maximum discharge (m3/s)31Effective head (m)370Annual power production (GWh)537Specifications (after the project)Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil RiverType of power plantDower StationName of riverHemsil RiverType of power plantDam and waterway typeYear of commission2019Maximum discharge (m3/s)370Annual power production (GWh)370Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish I bectricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
project)Hemsil II Power StationName of power plantHemsil RiverType of power plantDam and waterway typeYear of commission2006Maximum output (MW)98Maximum discharge (m3/s)31Effective head (m)370Annual power production (GWh)Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil RiverType of power plantDower Station Hemsil III Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantDam and waterway typeYear of commission production (GWh)2019Maximum discharge (m3/s)25Effective head (m) Annual power production (GWh)370Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Itectricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh. <th></th> <th></th>		
Name of power plantHemsil II Power StationName of riverHemsil RiverType of power plantDam and waterway typeYear of commission2006Maximum output (MW)98Maximum discharge (m3/s)31Effective head (m)370Annual power production (GWh)Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil RiverType of power plantDam and waterway typeYear of commission2019Maximum output (MW)83Maximum output (MW)83Effective head (m)370Annual power production (GWh)370Maximum output (MW)83Maximum output (MW)870Annual power production (GWh)370Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
Name of riverHemsil RiverType of power plantDam and waterway typeYear of commission2006Maximum output (MW)98Maximum discharge (m3/s)31Effective head (m)370Annual power production (GWh)537Specifications (after the project)Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil III Power Station Hemsil RiverType of power plantDam and waterway typeYear of commission2019Maximum discharge (m3/s)370Effective head (m) Annual power production (GWh)370Overview of the project91Hemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		Hemsil II Power Station
Type of power plantDam and waterway typeYear of commission2006Maximum output (MW)98Maximum discharge (m3/s)31Effective head (m)370Annual power production (GWh)537Specifications (after the project)Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil RiverYpe of power plantDam and waterway typeYear of commission2019Maximum output (MW) 8383Effective head (m) Annual power production (GWh)370Overview of the project91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive plantup in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production form 537GWh to 628GWh.		
Year of commission2006Maximum output (IWW)98Maximum discharge (m3/s)31Effective head (m)370Annual power production (GWh)537Specifications (after the project)Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil II Power StationName of riverHemsil RiverType of power plantDam and waterway typeYear of commission production (GWh)2019Maximum output (MW) B383Maximum discharge production (GWh)370Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new vaterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98/WV to 181/WV, and annual power production from 537GWh to 628GWh.		
Maximum output (MW)98Maximum discharge (m3/s)31Effective head (m)370Annual power production (GWh)537Specifications (after the project)Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil III Power Station Dam and waterway typeYear of commission2019Maximum output (MW) 83 Maximum discharge (m3/s)370Effective head (m) Annual power production (GWh)370Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
Maximum discharge (m3/s)31Effective head (m)370Annual power production (GWh)537Specifications (after the project)Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil III Power Station Dam and waterway typeYear of commission2019Maximum output (MW) 8383Effective head (m) Annual power production (GWh)370Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
(m3/s)Effective head (m)370Annual power537production (GWh)537Specifications (after the project)Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil III Power StationName of riverHemsil RiverType of power plantDam and waterway typeYear of commission2019Maximum discharge (m3/s)370Effective head (m) production (GWh)370Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
Effective head (m)370Annual power production (GWh)537Specifications (after the project)Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil III Power Station Hemsil III Power StationName of riverDam and waterway typeYear of commission2019Maximum output (MW)83Maximum discharge (m3/s)370Effective head (m) Production (GWh)370Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
Annual power production (GWh)537Specifications (after the project)Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil III Power StationName of riverHemsil RiverType of power plantDam and waterway typeYear of commission2019Maximum output (MW)83Maximum discharge (m3/s)25Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.	· · · · ·	370
production (GWh)Specifications (after the project)Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil III Power StationName of riverHemsil RiverType of power plantDam and waterway typeYear of commission2019Maximum output (MW)83Maximum discharge (m3/s)25Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
Specifications (after the project)Note: Specifications of the existing Hemsil II Power Station are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil III Power StationName of riverHemsil III Power StationType of power plantDam and waterway typeYear of commission2019Maximum output (MW)83Maximum discharge (m3/s)25Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
project)are the same as those before the project. Hemsil III Power Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil III Power StationName of riverHemsil RiverType of power plantDam and waterway typeYear of commission2019Maximum output (MW)83Maximum discharge (m3/s)25Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production form 537GWh to 628GWh.		Note: Specifications of the existing Hemsil II Power Station
Station is newly constructed as an expansion of the existing power station.Name of power plantHemsil III Power StationName of riverHemsil RiverType of power plantDam and waterway typeYear of commission2019Maximum output (MW)83Maximum discharge (m3/s)25Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.Improvement ofImprovement of		
Name of power plantHemsil III Power StationName of riverHemsil RiverType of power plantDam and waterway typeYear of commission2019Maximum output (MW)83Maximum discharge (m3/s)25Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.	projecty	
Name of power plantHemsil III Power StationName of riverHemsil RiverType of power plantDam and waterway typeYear of commission2019Maximum output (MW)83Maximum discharge (m3/s)25Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
Name of riverHemsil RiverType of power plantDam and waterway typeYear of commission2019Maximum output (MW)83Maximum discharge (m3/s)25Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.Improvement ofImprovement of	Name of power plant	
Type of power plantDam and waterway typeYear of commission2019Maximum output (MW)83Maximum discharge (m3/s)25Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
Year of commission2019Maximum output (MW)83Maximum discharge (m3/s)25Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
Maximum output (MW)83Maximum discharge (m3/s)25Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
Maximum discharge (m3/s)25Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
(m3/s)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
Effective head (m)370Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		
Annual power production (GWh)91Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.Improvement ofMarket of Market of Market of Market of Market of		370
production (GWh)Hemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.Improvement ofImprovement of		
Overview of the projectHemsil II Power Station was constructed 55 to 60 years ago, but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.Improvement ofImprovement of		
but the power station's maximum discharge and equipment were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.		Hemsil II Power Station was constructed 55 to 60 years ago.
were small against the river inflow. An expansion of Hemsil II (named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.Improvement ofImprovement of		
(named Hemsil III) has therefore been assessed with the different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan 		
different solutions during the last decades. After planning and later realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.Improvement of		
Iater realization of the Norwegian-Swedish Electricity Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.Improvement of		
Certificate Market, it was more likely that an expansion plan could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.Improvement of		
could be profitable. E-CO Energi, therefore, started an intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.Improvement ofImprovement of		
intensive planning in 2011. This ended with the construction of a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.Improvement of		
a new waterway and power station system that was close to and parallel with the existing scheme. Maximum output increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh.Improvement of		
increased from 98MW to 181MW, and annual power production from 537GWh to 628GWh. Improvement of		
production from 537GWh to 628GWh. Improvement of		and parallel with the existing scheme. Maximum output
production from 537GWh to 628GWh. Improvement of		
		production from 537GWh to 628GWh.
performance		
Increase in output Maximum output was increased from 98MW to 181MW.	Increase in output	Maximum output was increased from 98MW to 181MW.

	Annual manual method is a superior of the Od OM/h, due to the
Increase in power	Annual power production was increased by 91GWh due to the
production	increase in output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	N/A
Cost	At the planning stage, the project was assessed as not
	profitable. This was resolved by the introduction of the
	Norwegian-Swedish Electricity Certificate Market, which was
	launched in 2012.
Environmental	The ecological flows were set to 200 l/s in summer and 50 l/s
conservation	in winter, which correspond to the EIA conclusion.
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	Effective utilization of unused water resources by the
Effective use of water	expansion of existing power station. The increase in maximum
resources	discharge and maximum output made it possible to raise the
	capacity factor of the power station.
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Nw.03 Hemsil
	#3
	https://www.ieahydro.org/media/5fb06b0d/
	Vol2 Case History English(207-408).pdf

Project code	NW04
Name of the project	Renewal of Hol I Power Station
Location/country of the	Buskerud County, Norway
project	
Implementing body of the	E-CO Energi AS
project	
Implementing period	2009 – 2012
Type of the project	Renewal/upgrading
Specifications (before the	
project)	
Name of power plant	Hol 1 Power Station
Name of river	Votna River, Urunda River
Type of power plant	Dam and waterway type
Year of commission	Unit 2: 1949, Unit 4: 1956
Maximum output (MW)	186MW (Unit 1 & 2: 44MW/unit, Unit 3 & 4: 49MW/unit)
Maximum discharge	N/A
(m3/s)	
Effective head (m)	Unit 1 & 2: 385m, Unit 3 & 4: 350m
Annual power	754
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Hol 1 Power Station
Name of river	Votna River, Urunda River
Type of power plant	Dam and waterway type
Year of commission	Unit 1: 2009, Unit 2: 2011, Unit3: 2012, Unit4: 2010
Maximum output (MW)	220MW (Unit 1 & 2: 57MW/unit, Unit 3 & 4: 53MW/unit)
Maximum discharge	N/A
(m3/s)	
Effective head (m)	Unit 1 & 2: 395m, Unit 3 & 4: 355m
Annual power	774
production (GWh)	
Overview of the project	Hol I Power Station utilizes the head from Varaldsetvatn
	waterfall for units 1 and 2 in Votna River and the head from
	Strandavatn waterfall for units 3 and 4 in Urunda River. The
	first two units were commissioned in 1949, and units 3 and 4
	in 1955 and 1956 respectively. Due to the aging and
	deterioration of electrical equipment, E-CO Energi decided to
	implement a comprehensive renewal. Renewal works were
	aimed to increase annual power production with increased
	maximum discharge and improved efficiency for new turbine
Improvement of	runners.
Improvement of performance	
Increase in output	Maximum output was increased from 186MW to 220MW by
	the increase in maximum discharge and improvement of
	efficiency.
Increase in power	Annual power production was increased by 20GWh due to the
production	increase in output.
Reliability/flexibility	N/A

Others	N/A
Challenges in the project	
Technology	After the upgrade of generators No.1 and No.2, an unexpected noise occurred and spread in the penstock due to the resonance. Several countermeasures were carried out including cutting the runner blade and isolating the penstock to reduce the noise level.
Cost	The Norwegian government prioritized the target of the increase of renewable power production through the refurbishment of existing power stations. It was an incentive for the renewal.
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of	I-2 Renewal of electro-mechanical equipment changing intake
development type	discharge/hydraulic head
Requirement A:	Utilization of unused potential by increasing maximum
Effective use of water	discharge and improved turbine efficiency.
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility corresponding to	
market needs	
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Nw.04_Hol 1 <u>https://www.ieahydro.org/media/5fb06b0d/</u> Vol2_Case_History_English(409-598).pdf

Project code	NW05
Name of the project	Redevelopment of Hunsfos East Power Station
Location/country of the	Vest-Agder County, Norway
project	5 - <u>)</u> , <u>j</u>
Implementing body of the	Agder Energi Hydro Production
project	5 5 7
Implementing period	2005 - 2008
Type of the project	Redevelopment
Specifications (before the	
project)	
Name of power plant	Hunsfos West Power Station
Name of river	Otra River
Type of power plant	Waterway type
Year of commission	Unit 1: 1926, Unit 2: 1964
Maximum output (MW)	15.5MW (Unit 1: 3 MW, Unit 2: 12.5 MW)
Maximum discharge	130
(m3/s)	
Effective head (m)	N/A
Annual power	80
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Hunsfos West Power Station
Name of river	Otra River
Type of power plant	Waterway type
Year of commission	Unit 2: 1964 (Unit 1 was abolished in 2008.)
Maximum output (MW)	12.5MW
Maximum discharge (m3/s)	110
Effective head (m)	N/A
Annual power	N/A
production (GWh)	
Name of power plant	Hunsfos East Power Station
Name of river	Otra River
Type of power plant	Waterway type
Year of commission	2008
Maximum output (MW)	15
Maximum discharge	120
(m3/s)	
Effective head (m)	14
Annual power	145 (total of Hunsfos West and Hunsfos East)
production (GWh)	
Overview of the project	Hunsfos West Power Station, a 15.5 MW run-of-river type, had been in operation since 1926 in the western stream of the
	small island at Hunsfos in the Otra River in southern Norway.
	In 2008, the old small 3MW unit at the Hunsfos West Power
	Station was removed due to poor performance, and a new
	Hunsfos East Power Station with an output of 15MW was

	constructed in the eastern stream of the island. The two plants
	share a small pond for water intake. The redevelopment has
	resulted in the effective use of river water for power
	generation.
Improvement of	
performance	
Increase in output	The total maximum output was increased from 15.5MW to 27.5MW through the redevelopment.
Increase in power	Total annual power production was increased by 65GWh due
production	to the increase in output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	The main challenge during construction was the control of
	river flow. During construction, the total river flow in the Otra
	River had to be diverted to the western stream of the river.
Cost	The Norwegian government prioritized the target of the
	increase of renewable power production through the
	refurbishment of existing power stations. It was an incentive
	for the redevelopment.
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	II 4 Development veige sum versige stantist
Classification of	II-1 Development using unused potential
development type	
Requirement A: Effective use of water	A new power station was constructed to effectively use the
resources	unused potential in the river. The increase of power discharge increased maximum output and annual power production.
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Nw.05 Hunsfos
	East
	https://www.ieahydro.org/media/5fb06b0d/
	Vol2_Case_History_English(409-598).pdf

Name of the project New construction of Iveland II Power Station Location/country of the project Aust-Agder County, Norway Implementing body of the project Agder Energi Hydro Production Implementing period 2013 – 2016 Type of the project New construction Specifications (before the project) New construction Name of power plant Dam and waterway type Type of power plant Dam and waterway type Year of commission 1945 Maximum discharge (m3/s) 116 Effective head (m) 50 Annual power 350 specifications (after the project) Note: Specifications of the existing Iveland I Power Station are the same as those before the project. Name of power plant Dam and waterway type Year of commission 2016 Maximum discharge (m3/s) 100 Effective head (m) 50 Annual power 50 Name of river 0tra River Type of power plant Dam and waterway type Year of commission 2016 Maximum discharge (m3/s) 50	Project code	NW06
Location/country of the projectAust-Agder County, NorwayImplementing body of the projectAgder Energi Hydro ProductionImplementing period2013 – 2016Type of the projectNew constructionName of power plantVeland I Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission1945Maximum output (MW)45Maximum output (MW)50Annual power production (GWh)50Specifications (after the project)Note: SpecificationsName of power plantNote: SpecificationsName of power plantNote: SpecificationsMaximum output (MW)45Maximum output (MW)50Annual power production (GWh)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of power plantIveland II Power StationName of power plantVeland II Power StationName of power plantIveland II Power StationName of power plantIveland II Power StationName of power plantIveland I Power StationName of power plantIveland II Power StationName of power plantVeland I Power StationNatimum output (MW)45	,	
projectImplementing body of the projectImplementing period2013 - 2016Type of the projectName of power plantName of riverOtra RiverType of power plantDam and waterway typeYear of commission1945Maximum discharge (m3/s)Effective head (m)Specifications (affer the project)Name of riverOtra RiverType of power plantDam and waterway typeYear of commission1945Maximum discharge (m3/s)Effective head (m)Specifications (affer the project)Name of riverOtra RiverType of power plantVeland II Power StationName of riverOtra RiverType of power plantVeland II Power StationName of riverOtra RiverType of power plantVeland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum discharge (m3/s)Effective head (m)50Annual power 		Aust-Agder County, Norway
Implementing body of the projectAgder Energi Hydro ProductionImplementing period2013 – 2016Type of the projectNew constructionSpecifications (before the project)Name of power plantName of power plantIveland I Power StationName of riverOtra RiverType of opwer plantDam and waterway typeYear of commission1945Maximum output (MW)45Maximum discharge (m3/s)116Effective head (m)50Specifications (after the project)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of power plantIveland II Power StationName of power plantDam and waterway typeYear of commission2016Maximum output (MW)45Maximum discharge (m3/s)100Otra River Type of power plant2016Maximum dupt (MW)50Annual power production (GWh)50Effective head (m) Annual power production (GWh)50Verview of the projectVeland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland I Power station with an output of 45MW was built in 2016. The two power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station. Annual power production with		5
projectMarketImplementing period2013 – 2016Type of the projectNew constructionName of power plantIveland I Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission1945Maximum discharge116(m3/s)50Specifications (after the production (GWh)50Specifications (after the project)Note: Specifications of the existing Iveland I Power StationName of riverOtra RiverType of power plantDower StationSpecifications (after the project)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum discharge (m3/s)50Effective head (m)50Annual power production (GWh)50Overview of the project.Iveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the solow compared to the river flow, so a new Iveland II Power Station with an output was increased from 45 MW to 90 MW by the construction of a new power station.Improvement of perfor		Agder Energi Hydro Production
Type of the projectNew constructionSpecifications (before the project)Iveland I Power StationName of power plantIveland I Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission1945Maximum output (MW)45Maximum output (MW)50Annual power production (GWh)350Specifications (after the project)Note: Specifications of the existing Iveland I Power StationName of power plantIveland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum discharge (m3/s)100Maximum output (MW)45Maximum output (MW)45Maximum output (MW)45Maximum output (MW)45Maximum output (MW)45Maximum output (MW)50Annual power production (GWh)50Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power station share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in outputMaximum output was		
Type of the projectNew constructionSpecifications (before the project)Iveland I Power StationName of power plantIveland I Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission1945Maximum output (MW)45Maximum output (MW)50Annual power production (GWh)350Specifications (after the project)Note: Specifications of the existing Iveland I Power StationName of power plantIveland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum discharge (m3/s)100Maximum output (MW)45Maximum output (MW)45Maximum output (MW)45Maximum output (MW)45Maximum output (MW)45Maximum output (MW)50Annual power production (GWh)50Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power station share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in outputMaximum output was	Implementing period	2013 – 2016
project)Iveland I Power StationName of power plantOtra RiverType of power plantDam and waterway typeYear of commission1945Maximum output (MW)45Maximum discharge116(m3/s)50Effective head (m)50Annual power350production (GWh)Note: Specifications of the existing Iveland I Power Station arethe same as those before the project.Name of power plantNote: Specifications of the existing Iveland I Power Station areName of power plantDam and waterway typeYear of commission2016Maximum output (MW)45Maximum discharge100(m3/s)50Effective head (m)50Annual power150production (GWh)50Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station shar		New construction
Name of power plantIveland I Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission1945Maximum output (MW)45Maximum discharge (m3/s)116Effective head (m)50Annual power production (GWh)350Specifications (after the project)Note: Specifications of the existing Iveland I Power StationName of power plantIveland II Power StationName of power plantIveland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum discharge (m3/s)100Effective head (m) Annual power production (GWh)50Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in outputMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production wa	Specifications (before the	
Name of riverOtra RiverType of power plantDam and waterway typeYear of commission1945Maximum output (MW)45Maximum discharge (m3/s)116Effective head (m)50Annual power production (GWh)350Specifications (after the project)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of power plantIveland II Power StationName of power plantDura milver Dura RiverType of power plantDam and waterway typeYear of commission2016Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)50Annual power production (GWh)50Verview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW vas built in 2016. The two power station share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in outputMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A <th>project)</th> <th></th>	project)	
Type of power plantDam and waterway typeYear of commission1945Maximum output (MW)45Maximum discharge (m3/s)116Effective head (m)50Annual power production (GWh)350Specifications (after the project)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of power plantIveland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power station share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in outputMaximum output, MA MAOthersN/A	Name of power plant	Iveland I Power Station
Year of commission1945Maximum output (MW)45Maximum discharge (m3/s)116Effective head (m)50Annual power production (GWh)350Specifications (after the project)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of power plantIveland II Power StationName of power plantDam and waterway typeYear of commission2016Maximum output (MW)45Maximum output (MW)45Maximum discharge (m3/s)100Effective head (m) production (GWh)50Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A	Name of river	Otra River
Maximum output (MW)45Maximum discharge (m3/s)116Effective head (m)50Annual power production (GWh)350Specifications (after the project)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of power plantIveland II Power StationName of river Type of power plantOtra RiverType of power plantDam and waterway typeYear of commission (m3/s)2016Maximum output (MW)45Maximum discharge (m3/s)100Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945.Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A	Type of power plant	Dam and waterway type
Maximum discharge (m3/s)116Effective head (m)50Annual power production (GWh)350Specifications (after the project)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of power plantIveland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum output (MW)45Maximum discharge (m3/s)100Effective head (m) Production (GWh)50Verview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in poeration since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power production the increase in output.Annual power production was increased by 150 GWh due to the increase in output.N/AN/A	Year of commission	1945
(m3/s)Effective head (m)50Annual power production (GWh)350Specifications (after the project)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of power plantIveland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum output (MW)45Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built 2016. The two power stations share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station. Annual power production was increased by 150 GWh due to the increase in output.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A		
Effective head (m)50Annual power production (GWh)350Specifications (after the project)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of power plantIveland II Power StationName of power plantIveland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum output (MW)45Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A		116
Annual power production (GWh)350Specifications (after the project)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of power plantIveland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station. Annual power production was increased by 150 GWh due to the increase in output.N/AN/A		
production (GWh)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of power plantIveland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum output (MW)45Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power station share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.NAN/A		
Specifications (after the project)Note: Specifications of the existing Iveland I Power Station are the same as those before the project.Name of power plantIveland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum output (MW)45Maximum discharge (m3/s)100Effective head (m) production (GWh)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power production rediability/flexibilityN/AOthersN/A		350
project)the same as those before the project.Name of power plantIveland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum output (MW)45Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power station share an intake dam. Construction of the new power station by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station. Annual power production fa new power station. Annual power production of a new power station. Annual power production fa new power station. N/AN/AN/A		
Name of power plantIveland II Power StationName of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum output (MW)45Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station on with an output of 45MW was built in 2016. The two power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A		
Name of riverOtra RiverType of power plantDam and waterway typeYear of commission2016Maximum output (MW)45Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A		
Type of power plantDam and waterway typeYear of commission2016Maximum output (MW)45Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.Reliability/flexibility OthersN/A		
Year of commission2016Maximum output (MW)45Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.Reliability/flexibilityN/AOthersN/A		
Maximum output (MW)45Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A		
Maximum discharge (m3/s)100Effective head (m)50Annual power production (GWh)50Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A		
(m3/s)50Effective head (m)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A	,	
Effective head (m)50Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.Reliability/flexibilityN/AOthersN/A		100
Annual power production (GWh)150Overview of the projectIveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A		50
production (GWh)Iveland I Power Station on the Otra River in southern Norway, with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A		150
with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in outputMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A		
with an output of 45MW, has been in operation since 1945. Still, the amount of water used for power generation was low compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in outputMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.N/AN/A		Iveland I Power Station on the Otra River in southern Norway,
compared to the river flow, so a new Iveland II Power Station with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.Reliability/flexibilityN/AOthersN/A		
with an output of 45MW was built in 2016. The two power stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.Reliability/flexibilityN/AOthersN/A		
stations share an intake dam. Construction of the new power station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performance		
station doubled peak supply capacity and increased total annual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.Reliability/flexibilityN/AOthersN/A		
Improvement of performanceannual generation by 45%.Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.Reliability/flexibilityN/AOthersN/A		
Improvement of performanceMaximum output was increased from 45 MW to 90 MW by the construction of a new power station.Increase in power productionAnnual power production was increased by 150 GWh due to the increase in output.Reliability/flexibilityN/AOthersN/A		
performance Maximum output was increased from 45 MW to 90 MW by the construction of a new power station. Increase in power production Annual power production was increased by 150 GWh due to the increase in output. Reliability/flexibility N/A Others N/A	Improvement of	
Increase in power production Annual power production was increased by 150 GWh due to the increase in output. Reliability/flexibility N/A Others N/A		
Increase in power production Annual power production was increased by 150 GWh due to the increase in output. Reliability/flexibility N/A Others N/A		Maximum output was increased from 45 MW to 90 MW by the
production the increase in output. Reliability/flexibility N/A Others N/A		
Reliability/flexibility N/A Others N/A		
Others N/A		•
Challenges in the project		N/A
	Challenges in the project	

Technology	N/A
Cost	The introduction of the Norwegian-Swedish Electricity Certificate Market in 2012 was an investment incentive for the project.
Environmental conservation	N/A
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-1 Development using unused potential
Requirement A: Effective use of water resources	A new power station was constructed to effectively use the unused potential in the river. The increase of power discharge increased maximum output and annual power production.
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Nw.06_Iveland II https://www.ieahydro.org/media/5fb06b0d/ Vol2_Case_History_English(409-598).pdf

Project code	NW07
Name of the project	Redevelopment of Rånåsfoss III Power Station
Location/country of the	Akershus County, Norway
project	· ····································
Implementing body of the	Akershus Energi AS
project	J. J
Implementing period	2010 – 2016
Type of the project	Redevelopment
Specifications (before the	
project)	
Name of power plant	Rånåsfoss I Power Station
Name of river	Glomma River
Type of power plant	Dam type
Year of commission	1922
Maximum output (MW)	54
Maximum discharge	540
(m3/s)	
Effective head (m)	12.5
Annual power	220
production (GWh)	
Specifications (after the	Note: The existing Rånåsfoss I Power Station was
project)	redeveloped as the new Rånåsfoss III Power Station.
Name of power plant	Rånåsfoss III Power Station
Name of river	Glomma River
Type of power plant	Dam type
Year of commission	2016
Maximum output (MW)	81
Maximum discharge	N/A
(m3/s)	
Effective head (m)	N/A
Annual power	280
production (GWh)	
Overview of the project	At Rånåsfoss Falls on the Glomma River system in Norway, the Rånåsfoss I Power Station with an output of 54MW had
	been in operation since 1922 and the Rånåsfoss II Power
	Station with an output of 45MW since 1983. After about 90
	years of operation, the Rånåsfoss I has noticeably
	deteriorated in performance due to aging. In addition, the
	intake dam was overflowing for 2-3 months per year. Therefore, a complete renewal of the Rånåsfoss I was
	planned and the power station was redeveloped in 2016 as
	the new Rånåsfoss III Power Station with an output of 81MW.
Improvement of	
performance	
Increase in output	Maximum output was increased from 54 MW to 81 MW by the
	increased maximum discharge using the unused overflow at
	the intake dam.
Increase in power	Annual power production was increased by 60 GWh due to
production	the increase in output.
Reliability/flexibility	N/A

Others	N/A
Challenges in the project	
Technology	N/A
Cost	The introduction of the Norwegian-Swedish Electricity Certificate Market in 2012 was an investment incentive for the project.
Environmental conservation	N/A
Legal restriction	N/A
Others	The existing buildings have a high cultural value, and their preservation was a challenge.
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-1 Development using unused potential
Requirement A: Effective use of water resources	Effective utilization of unused potential at the intake dam by increasing maximum discharge in the redevelopment.
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	 [1] IEA Hydro (2016) Annex 11, Case History Nw.07_Rånåsfoss #3 https://www.ieahydro.org/media/5fb06b0d/ Vol2_Case_History_English(409-598).pdf

Project code	NW08
Name of the project	Expansion of Kongsvinger Power Station
Location/country of the	Hedmark County, Norway
project	nounant oounty, nonay
Implementing body of the	Eidsiva Vannkraft
project	
Implementing period	2008 – 2011
Type of the project	Expansion
Specifications (before the	
project)	
Name of power plant	Kongsvinger Hydropower Plant
Name of river	Glomma River
Type of power plant	Dam type
Year of commission	1975
Maximum output (MW)	21
Maximum discharge	250
(m3/s)	
Effective head (m)	10.25 (gross head)
Annual power	130
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Kongsvinger Hydropower Plant
Name of river	Glomma River
Type of power plant	Dam type
Year of commission	2011
Maximum output (MW)	43
Maximum discharge	500
(m3/s)	
Effective head (m)	10.25 (gross head)
Annual power	200
production (GWh)	
Overview of the project	Kongsvinger Power Station with an output of 21MW on the
	Glomma River system in Norway has been in operation since
	1975. After more than 30 years of operation, the efficiency of
	the water turbine had declined due to aging, and a complete
	rehabilitation was needed. However, because of the
	significant loss of power generation due to the long-term
	suspension of power generation for the rehabilitation of the
	existing unit, a new 22MW Unit 2 was installed in 2011, and
	comprehensive maintenance of Unit 1 was carried out later
	without any loss of power. The power generation rate of river
	water has been greatly improved by the addition of Unit 2.
Improvement of	
performance	
Increase in output	Maximum output was increased by the expansion of
	generating unit.
Increase in power	Annual power production was increased by 70 GWh due to
production Reliability/floxibility	the increase in output.
Reliability/flexibility	N/A

Others	N/A
Challenges in the project	
Technology	River flow control during construction
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	A new unit was installed to effectively use the unused
Effective use of water	potential in the river.
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History
	Nw.08_Kongsvinger
	https://www.ieahydro.org/media/5fb06b0d/
	Vol2_Case_History_English(409-598).pdf

Project code	NZ101
Name of the project	Renewal of Whakamaru Power Station
Location/country of the	Whakamaru, New Zealand
project	
Implementing body of the	Mighty River Power Ltd.
project	
Implementing period	2013 – 2017
Type of the project	Renewal/upgrading
Specifications (before the	
project)	
Name of power plant	Whakamaru Power Station
Name of river	Waikato River
Type of power plant	Dam type
Year of commission	1956
Maximum output (MW)	104.4
Maximum discharge	344
(m3/s)	
Effective head (m)	N/A
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Whakamaru Power Station
Name of river	Waikato River
Type of power plant	Dam type
Year of commission	2017
Maximum output (MW)	124.4
Maximum discharge	376
(m3/s)	
Effective head (m)	N/A
Annual power	+28 (additional)
production (GWh)	
Overview of the project	Whakamaru Power Station, located on the Waikato River in
	the North Island of New Zealand, has been operating since
	1956 with a total output of 104.4MW from four units. The Unit
	1 water turbine was refurbished in 2010, and the other
	generating facilities were completely renewed and upgraded
	in 2017 due to aging and declining performance after over 60
	years of operation. The maximum output increased to
Improvement of	124.4MW due to the increase of maximum water discharge.
performance	
Increase in output	Maximum output was increased by increasing maximum
	discharge in the renewal.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	

Technology	An axial air supply system to the runner was installed to
	stabilize the partial load operation due to the increase of
	maximum discharge.
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	I-2 Renewal of electro-mechanical equipment changing intake
development type	discharge
Requirement A:	Existing units were renewed and upgraded to effectively use
Effective use of water	the unused potential in the river by increasing maximum
resources	discharge.
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] WHAKAMARU POWER STATION REHABILITATION
	PROJECT
	https://www.andritz.com/resource/
	blob/264346/1870d2627fca1f311055c30720f5e0de/twining-
	whakamaru-rehabilitation-data.pdf

Project code	PT101
Name of the project	Redevelopment of Socorridos Power Station
Location/country of the	Autonomous Region of Madeira, Portugal
project	
Implementing body of the	Madeira's Public Electricity Company
project	
Implementing period	2004 – 2007
Type of the project	Redevelopment
Specifications (before the	
project)	
Name of power plant	Socorridos Power Station
Name of river	N/A
Type of power plant	Dam and waterway type
Year of commission	1995
Maximum output (MW)	24
Maximum discharge	6
(m3/s)	
Effective head (m)	450/433
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Socorridos Power Station
project)	are the same as those before the project. A new pumping
	station and a new storage reservoir/tunnel were constructed
	at the existing power station.
Name of power plant	Socorridos Power Station
Name of river	N/A
Type of power plant	Dam and waterway type
Year of commission	2007
Maximum output (MW)	24
Maximum discharge	6
(m3/s)	
Effective head (m)	450/433
Annual power	N/A
production (GWh)	
Overview of the project	Socorridos Power Station was commissioned in 1995, as the largest and most important multi-purpose hydraulic system for
	the production of water for public supply, irrigation and hydro
	energy in Madeira. The system includes a 15.5km long
	succession of underground tunnels and open canals as well
	as a hydropower station with a capacity of 24MW. However,
	the capacity of the power station's loading chamber (head
	tank) was not enough for a stable power supply all year round.
	Therefore, a project was implemented in 2004-2007 to
	transform the Socorridos Power Station into a reversible
	system with a new storage reservoir/tunnel and a new
	pumping station. This system made it possible to pump up
	water from a new reservoir to a new tunnel at night when
	water supply and electricity demand are low to secure the
	amount of water for stable power generation, water supply,
	and irrigation.

Improvement of	
performance	
Increase in output	No
Increase in power	N/A
production	
Reliability/flexibility	The new reversible water use system has contributed to
	stable power generation all year round and increased the
	reliability of power generation.
Others	N/A
Challenges in the project	
Technology	N/A
Cost	The project was funded by the European Regional
	Development Fund (ERDF).
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-2 Development without using unused potential
development type	
Requirement A:	The project has made the best and most efficient use of water
Effective use of water	resources for the supply, irrigation, and production of
resources	electricity by introducing a pumped storage power generation
	system.
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	The new reversible water use system has contributed to
reliability/flexibility	stable power generation all year round and increased the
corresponding to	reliability of power generation.
market needs	
Others	N/A
References	[1] Optimizing the Multiple Purpose Function of the Socorridos
	Hydro Power Station for Use All Year Round to Produce
	Water for Public Supply, Irrigation and Electricity
	https://ec.europa.eu/regional_policy/en/projects/
	best-practices/portugal/1444/download

Project code	PT102
Name of the project	New construction of Salamonde II Pumped Storage Power
	Station
Location/country of the	Viseu District, Portugal
project	Vieca Diotrici, i ortagai
Implementing body of the	Energias de Portugal (EDP)
project	
Implementing period	2015
Type of the project	New construction
Specifications (before the	
project)	
Name of power plant	Salamonde I Power Station
Name of river	Cávado River
	Dam & waterway
Type of power plant Year of commission	1953
	42
Maximum output (MW)	
Maximum discharge	44
(m3/s)	
Effective head (m)	N/A
Annual power	244
production (GWh)	
Specifications (after the	Note: Specifications of the existing Salamonde I Power Station
project)	are the same as those before the project.
Name of power plant	Salamonde II Pumped Storage Power Station
Name of river	Cávado River
Type of power plant	Pumped Storage
Year of commission	2015
Maximum output (MW)	224
Maximum discharge	200
(m3/s)	
Effective head (m)	118
Annual power	386
production (GWh)	
Overview of the project	Salamonde I Power Station in North Portugal was commissioned
	in 1953 with a capacity of 42MW. In 2015, a new pumped
	storage power station with a capacity of 224MW, Salamonde II,
	was constructed using the existing intake reservoir for the
	Salamonde I Power Station.
Improvement of	
performance	
Increase in output	Maximum output was increased by the construction of a new
	pumped storage power station.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	The reliability and flexibility of power plant operation was
	improved by the new pumped storage power station.
Others	N/A
Challenges in the project	

Technology	Construction work of tunnel and underground power station
	adjacent to the existing underground facilities had to be carried
	out safely and with minimal effects on the operation of the
	existing power station.
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-2 Development without using unused potential
development type	
Requirement A:	N/A
Effective use of water	
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	The reliability and flexibility were improved by the increase of
reliability/flexibility	peak supply capacity due to the newly constructed pumped
corresponding to market needs	storage power station.
	N/A
Others	
References	[1] Salamonde II underground hydroelectric complex in the North
	of Portugal. Design and construction
	https://www.researchgate.net/publication/
	332500115_Salamonde_II_undergound_hydroelectric_complex_
	in_the_North_of_Portugal_Design_and_construction

Project code	PT103
Name of the project	New construction of Frades II Pumped Storage Power Station
Location/country of the	Viseu District, Portugal
project	vised District, i ortugal
Implementing body of the	Energias de Portugal (EDP)
project	
Implementing period	2017
Type of the project	New construction
Specifications (before the	
project)	
Name of power plant	Frades I Pumped Storage Power Station
Name of river	Cávado River
Type of power plant	Pumped storage type
Year of commission	2005
Maximum output (MW)	194
Maximum discharge	N/A
(m3/s)	
Effective head (m)	N/A
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Frades I Pumped Storage
project)	Power Station are the same as those before the project.
Name of power plant	Frades II Pumped Storage Power Station
Name of river	Cávado River
Type of power plant	Pumped storage type
Year of commission	2017
Maximum output (MW)	766
Maximum discharge	200
(m3/s)	200
Effective head (m)	414
Annual power	N/A
production (GWh)	
Overview of the project	The Venda Nova and Salamonde dams were built in the
	1950s and 1960s in the Cávado River in northwestern
	Portugal. Frades I Pumped Storage Power Station using the
	existing two reservoirs was commissioned in 2005 with a
	capacity of 194MW. In addition, the Frades II Pumped
	Storage Power Station was newly constructed in 2017 using
	the existing two reservoirs for Frades I with two units of
	378MW variable speed pump-turbine.
Improvement of	
performance	
Increase in output	Maximum output was increased by the construction of a new
	pumped storage power station.
Increase in power	N/A
production	
Reliability/flexibility	The reliability and flexibility of power plant operation were
	improved by the new variable speed pumped storage power
	station.
Others	N/A
Others	N/A

Challenges in the project	
Technology	Construction work of underground structures adjacent to the existing underground facilities had to be carried out safely and with minimal effects on the operation of the existing power station.
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-2 Development without using unused potential
Requirement A: Effective use of water resources	N/A
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	The reliability and flexibility were improved by the increase of peak supply capacity and variable speed pump-turbines due to the newly constructed pumped storage power station.
Others	N/A
References	 [1] Tunneling project of the year https://awards.ita-aites.org/images/Proceedings/ 2016/20-VENDA-NOVA-III-REPOWERING-PROJECT.pdf [2] Award-Winning Pumped-Storage Hydro Facility a Modern Marvel <u>https://www.powermag.com/</u> award-winning-pumped-storage-hydro-facility-a-modern- marvel/ [3] VOITH Project Report Frades II http://voith.com/ca-fr/ 2012-10-12_Project_Report_Frades_II.pdf

Project code	PT104
Name of the project	Operation change of Valeira Power Station
Location/country of the	Viseu District, Portugal
project	Viele District, Portagai
Implementing body of the	Energias de Portugal (EDP)
project	
Implementing period	2019
Type of the project	Change of power plant operation
Specifications (before the	
project)	
Name of power plant	Valeira Power Station
Name of river	Douro River
Type of power plant	Dam type
Year of commission	1976
Maximum output (MW)	246
Maximum discharge	360
(m3/s)	
Effective head (m)	28.5
Annual power	610
production (GWh)	
Specifications (after the	Note: Specifications of the existing Valeira Power Station are
project)	the same as those before the project.
Name of power plant	-
Name of river	-
Type of power plant	-
Year of commission	2019
Maximum output (MW)	-
Maximum discharge	-
(m3/s)	
Effective head (m)	-
Annual power	-
production (GWh)	
Overview of the project	Energias de Portugal (EDP) and GE have been collaborating
	to develop methodologies to extend the operating range of
	hydro turbines using digital technology. A three-phase
	methodology was developed based on the historical operation
	data, field tests using sensors and a remote monitoring
	system for machine risk management. This approach was
	successfully applied to the Kaplan turbines at the Valeira
	Power Station on the Douro River in 2019, showing good perspectives for the other power stations on the river.
Improvement of	
performance	
Increase in output	No
Increase in power	Annual power production is expected to increase by reducing
production	the lower threshold and improving the efficiency of turbine
	operation.
Reliability/flexibility	Reducing the lower limit of power plant operation improves
	flexibility in the power supply to the Iberian Electricity Market.
Others	N/A

Challenges in the project	
Technology	It was required to install the appropriate sensors and to collect data.
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	III-1 Optimized operation of electro-mechanical equipment
development type	
Requirement A:	Effective utilization of unused potential in the river by
Effective use of water	extension of the operating range of hydro turbine.
resources	
B: Improved and/or	A new methodology was developed to extend the operating
advanced	range of hydro turbine using digital technology.
methodologies	
C: Improvement of	Range extension of power plant operation improves flexibility
reliability/flexibility	in the power supply to the Iberian Electricity Market.
corresponding to	
market needs	
Others	N/A
References	[1] F. André, et al.: Range extension: Methodologies to increase operational flexibility of hydropower plants through
	digital technology, Hydro2019, Porto, Portugal.

Project code	SW01
Name of the project	New construction of Veytaux II Pumped Storage Power
	Station
Location/country of the	Canton de Vaud, Switzerland
project	
Implementing body of the	Alpiq Suisse SA
project	
Implementing period	2012 – 2016
Type of the project	New construction
Specifications (before the	
project)	
Name of power plant	Veytaux I Pumped Storage Power Station
Name of river	N/A
Type of power plant	Pumped storage type
Year of commission	1971
Maximum output (MW)	240 (60MW x 4units)
Maximum discharge	Turbine: 32, Pump: 24
(m3/s)	
Effective head (m)	878
Annual power	N/A
production (GWh)	
Specifications (after the	Note: Specifications of the existing Veytaux I Power Station
project)	are the same as those before the project.
Name of power plant	Veytaux II Pumped Storage Power Station
Name of river	N/A
Type of power plant	Pumped storage type
Year of commission	2016
Maximum output (MW)	240 (120MW x 2units)
Maximum discharge	Turbine: 25, Pump: 19
(m3/s)	
Effective head (m)	878
Annual power	N/A
production (GWh)	
Overview of the project	Veytaux I Power Station was commissioned in 1971 as a pumped storage power plant with an output of 240MW. It is located in western Switzerland and utilizes the upper Hongrin reservoir and lower Lake Geneva. In order to respond to the increasing demand for peak power and balancing energy, a new Veytaux II Pumped Storage Power Station with an output of 240MW was built adjacent to the existing Veytaux I and started operation in 2017. The Veytaux II Power Station utilizes the existing waterways of penstock and tailrace for Veytaux I.
Improvement of	
performance	
Increase in output	Maximum output was increased by the construction of a new
	pumped storage power station.
Increase in power	No
production	

Reliability/flexibility	The reliability and flexibility of power plant operation were improved by the new pumped storage power station.
Others	N/A
Challenges in the project	
Technology	Precautions and countermeasures were taken to ensure the
	safety of excavation work near the existing power station in
	operation.
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-2 Development without using unused potential
development type	
Requirement A:	N/A
Effective use of water	
resources	
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	The reliability and flexibility of power plant operation were
reliability/flexibility	improved by increasing maximum output and regulating power
corresponding to	by the new pumped storage power station.
market needs	
Others	N/A
References	[1] IEA Hydro (2016) Annex 11, Case History Sw.01_Veytaux
	https://www.ieahydro.org/media/5fb06b0d/
	Vol2_Case_History_English(409-598).pdf

Project code	SW101
Name of the project	Renewal of Profray Power Station
Location/country of the	Le Châble, Val de Bagnes, Canton of Valais, Switzerland
project	,,
Implementing body of the	Altis Power Company
project	
Implementing period	2006 – 2007
Type of the project	Renewal
Specifications (before the	
project)	
Name of power plant	Profray Power Staion
Name of river	-
Type of power plant	Waste water turbining before treatment
Year of commission	1993
Maximum output (MW)	0.67
Maximum discharge	0.24
(m3/s)	
Effective head (m)	323
Annual power	0.585
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Profray Power Staion
Name of river	-
Type of power plant	Waste water turbining before treatment
Year of commission	2007
Maximum output (MW)	0.38
Maximum discharge	0.1
(m3/s)	
Effective head (m)	430
Annual power	0.85
production (GWh)	
Overview of the project	The wastewater from the Verbier ski resort is collected in a
	storage basin of 400m3, equipped with a 6 mm trash rack to remove floating material. This basin is also used as a forebay for a hydro scheme where the power house is located 2.3km away from the treatment plant. After passing through the hydro turbine, the wastewater discharges into the treatment plant inlet before finally being released to the nearby river. A bypass is incorporated to guarantee the wastewater treatment operation, whether or not the hydro plant is operational, and for times when the operational discharge needs to be greater than the turbine maximum discharge. The power plant which was originally commissioned in 1993 was refurbished and improved in 2007. After 14 years in service, the control panel was out of date and in need of upgrading. The generator bearings needed to be replaced, and sand in the turbined water resulted in significant abrasion to the runner and nozzles (and consequent decrease in efficiency). In addition to this maintenance work, the first turbine was somewhat

	oversized as it was designed for the wastewater treatment plant maximal discharge of 240 l/s. This anticipated the peak of the tourist season, which, in fact, only reached a few days per year and, therefore, was not optimal regarding the annual energy generation. The first turbine had been in service for 14 years, with limited maintenance (about 40 hours per year).
Improvement of	
performance	
Increase in output	As the original equipment was oversized, the refurbishment
morodoo m output	led to a lower maximum output and a lower design flow.
Increase in power	Annual power production has been increased from 585MWh
production	to 850MWh (+45%) by a better efficiency due to an
production	appropriate choice of the design flow.
Delichility/flowibility/	N/A
Reliability/flexibility Others	N/A
Challenges in the project	Doduction of the design flow localize to a reduction of the
Technology	Reduction of the design flow leading to a reduction of the
	turbine dimensions when using raw wastewater. Specific
0(design for easy maintenance and clogging risk reduction.
Cost	N/A
Environmental	N/A
conservation	
Legal restriction	N/A
Others	High reliability as installed in a multipurpose industrial
	environment.
Characteristics regarded	
as "Hidden Hydro" Classification of	1.0 Denouvel of electric mach encient environment ob environ intelec
	I-2 Renewal of electro-mechanical equipment changing intake
development type	discharge
Requirement A:	N/A
Effective use of water	
resources	Ontimel use of the evailable water by an enprepriete sheize of
B: Improved and/or	Optimal use of the available water by an appropriate choice of
advanced	the design flow. Use of wastewater.
methodologies	N/A
C: Improvement of reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] EU funded project SHAPES, Energy recovery in existing
Kelerences	infrastructures with small hydropower plants - Multipurpose schemes, Overview and examples, case study No 11, p.36, ESHA and Mhylab.

Project code	SW102
Name of the project	Redevelopment of Schils Power Station
Location/country of the	Flums, Canton of St. Gallen, Switzerland
project	
Implementing body of the	St. Gallisch-Appenzellische Kraftwerke AG (SAK)
project	
Implementing period	2017 – 2021
Type of the project	Redevelopment
Specifications (before the	
project)	
Name of power plant	Originally 5 power stations (Altes / Neues Sägengüetli,
	Pravizin 1+2, Felsen)
Name of river	Schils River
Type of power plant	Waterway
Year of commission	1866 – 1943
Maximum output (MW)	about 8.1
Maximum discharge	0.4 - 2.5
(m3/s)	
Effective head (m)	480m for the first adduction, 368m for the second one. Each
	divided in two stages.
Annual power	0.585
production (GWh)	
Specifications (after the	Note: The old 5 power stations were replaced by a new power
project)	station with two penstocks and two units.
Name of power plant	Schils Power Station
Name of river	Schils River
Type of power plant	Waterway
Year of commission	2021
Maximum output (MW)	13.5 (11.5 + 2.0)
Maximum discharge	3.3 (2.6 + 0.7)
(m3/s)	400.269
Effective head (m)	490, 368
Annual power production (GWh)	48
Overview of the project	Five hydropower stations with a total output of approximately
	8.1MW built since 1866 on the Schils River in the canton of
	St. Gallen, Switzerland, were owned by SAK in 2014 and
	redeveloped in 2017-2021. The intake structures and
	penstocks were renewed, and the five generating units were
	removed to form a new Schils Power Station consisting of two
	new generating units with a total output of 13.5 MW, which
	was commissioned in 2021.
Improvement of	
performance	
Increase in output	Total output was increased from 8.1 to 13.5MW by the
	redevelopment.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A

Challenges in the project	
Technology	N/A
Cost	N/A
Environmental	A fishway was installed at the intake facility to allow fish to
conservation	migrate between the upstream and downstream reaches of
	the river.
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	Existing power stations were redeveloped to effectively use
Effective use of water	the unused potential in the river by increasing maximum
resources	discharge.
B: Improved and/or	N/A
advanced	
methodologies	
C: Improvement of	N/A
reliability/flexibility	
corresponding to	
market needs	
Others	N/A
References	[1] Wasserkraftwerk schils
	https://www.sak.ch/ueber-sak/standorte/wasserkraftwerke/kw-
	schils

Project code	SW103
Name of the project	Renewal of Milan Power Station
Location/country of the	Bex, Canton of Vaud, Switzerland
project	
Implementing body of the	Salines Suisses SA
project	
Implementing period	2020 – 2023
Type of the project	Expansion
Specifications (before the	
project)	
Name of power plant	Bévieux Power Station
Name of river	Avançon River
Type of power plant	waterway type
Year of commission	1943
Maximum output (MW)	2
Maximum discharge	4.1
(m3/s)	
Effective head (m)	75.8
Annual power	10.5
production (GWh)	
Specifications (after the	Note: The Bévieux Power Station was expanded as the Milan
project)	Power Station.
Name of power plant	Milan Power Station
Name of river	Avançon River
Type of power plant	waterway type
Year of commission	2023
Maximum output (MW)	4.2
Maximum discharge	7
(m3/s)	
Effective head (m)	76.6
Annual power	15.7
production (GWh)	
Overview of the project	Salines Suisses SA, on its industrial site in Bex, built the first run-of-river Bévieux Power Station in 1943 to continue its industrial activities when facing the shortage of coal and wood in Europe. In 2029, the existing water right validity will be over and Salines Suisses SA had to renew it to continue the power plant operation. Between 2005 and 2010, the Swiss Confederation set up a financial aid system that allowed operators wishing to upgrade or refurbish their installations, to receive a subsidy on each kWh produced. Due to the age of the installations, the need to renew the water right in the near future, and in view of the subsidy available, it was decided to refurbish and upgrade the hydroelectric installation. The aim of the project was to optimize the maximum flow of water that could be taken from the river (while respecting the laws regarding the environmental flows) and to limit as much as possible the head losses and the unavailability of turbines. From this came the choice to add a third unit, allowing the turbining of the smallest low water flow.

Improvement of	
Improvement of performance	
Increase in output	Increase from 2.0 to 4.2 MW by expansion
	Increase from 2.0 to 4.2 MW by expansion Increase from 10.5 GWh to 15.7 GWh due to the increase of
Increase in power	
production	design flow, the decrease of head losses (penstock of 1600
	mm diameter instead of 1100 mm) and the addition of a small
	unit for the lowest available flows (at least 35 days per year).
Reliability/flexibility	The previous power station had two units with a flow repartition of 1/3-2/3. The new one has 3 units with a flow
	repartition 1/5-2/5. It will allow better flexibility and the
	turbining of flows between 0.4m3/s and 7m3/s.
Others	The installation of 3 units instead of 2 will optimize the
Others	production and maintenance periods.
Challenges in the project	production and maintenance periods.
Technology	N/A
Cost	Respect for the budget is a real challenge, considering the
COSL	amount of special works due to the increase of the penstock
	diameter.
Environmental	The discussions with the NGO and Authorities regarding the
conservation	mitigation measures were long and difficult. The decided
	mitigation measures were finally unfeasible and new ones had
	been discussed.
Legal restriction	N/A
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	The Swiss federal and local laws require that the water
Effective use of water	resources be used to the fullest extent possible. A renewal of
resources	the water right with the same design flow was not allowed.
B: Improved and/or	Optimization of the whole power scheme.
advanced	
methodologies	
C: Improvement of	The flexibility of the power plant is a priority. It is achieved by
reliability/flexibility	the use of three units.
corresponding to	
market needs	
Others	N/A
References	N/A

Project code	SW104
Name of the project	Renewal of Glarey Power Station
Location/country of the	Bex, Canton of Vaud, Switzerland
project	
Implementing body of the	Energie renouvelable de l'Avancon SA
project	
Implementing period	2020 – 2023
Type of the project	Expansion
Specifications (before the	
project)	
Name of power plant	Glarey
Name of river	Avançon
Type of power plant	Waterway type
Year of commission	N/A
Maximum output (MW)	N/A
Maximum discharge	N/A
(m3/s)	
Effective head (m)	16.3
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Glarey
Name of river	Avançon
Type of power plant	Waterway type
Year of commission	2023
Maximum output (MW)	2.2
Maximum discharge	7
(m3/s)	
Effective head (m)	38.7
Annual power	7.3
production (GWh)	An about 90 year old hydronower station on the Average
Overview of the project	An about 80-year-old hydropower station on the Avancon River in the canton of Vaud, Switzerland, has been upgraded.
	The existing intake and penstocks were removed, and a new
	intake and penstocks were installed to connect directly to the
	upstream power station. Two generating units were installed
	to increase output and improve the efficiency of power plant
	operation. The environmental flows in the river were increased
	to comply with new regulations.
Improvement of	
performance	
Increase in output	Total output was increased by increasing intake discharge
	and hydraulic head by the renewal.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	

Technology	Specific foundations for the power station were needed.
Cost	No intake in the river was possible due to high costs, so the water was taken directly from the upstream power station.
Environmental conservation	No intake in the river was possible due to environmental effects, so the water was taken directly from the upstream power station.
Legal restriction	Legal regulation for the natural environment requires increased environmental flows.
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-1 Development using unused potential
Requirement A: Effective use of water resources	The existing power station was renewed and upgraded to effectively use the unused water discharge and hydraulic head at the intake from the upstream power station.
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	N/A

Project code	SW105
Name of the project	Renewal of Farettes Power Station
Location/country of the	Aigle & Ormonts Valley, Canton of Vaud, Switzerland
project	
Implementing body of the	Romande Energie SA
project	5
Implementing period	2012 – 2016
Type of the project	Expansion
Specifications (before the	
project)	
Name of power plant	Farettes Power Station
Name of river	Grande Eau River
Type of power plant	Waterway type
Year of commission	1967
Maximum output (MW)	6.7
Maximum discharge	2.5
(m3/s)	
Effective head (m)	N/A
Annual power	54.7
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Farettes Power Station
Name of river	Grande Eau River
Type of power plant	Waterway type
Year of commission	2016
Maximum output (MW)	22.5
Maximum discharge	6.5
(m3/s)	
Effective head (m)	353
Annual power	80.2
production (GWh)	The Ferrettee Device Otation commission adding 4007 on the
Overview of the project	The Farettes Power Station commissioned in 1967 on the Grande Eau River in the canton of Vaud, Switzerland, was originally designed for a flow that reached around 150days per year. A possible extension of the design flow was studied in the modernization of the power station and finally a design flow of 6.5m3/s (reached around 80days per year) instead of 2.5m3/s was chosen. The hydraulic head was also increased thanks to the use of a pressurized headrace tunnel. The water coming from the outlet of the Pont-de-la-Tine Power Station flows through a 5km, 3m diameter tunnel before reaching the surge tank from which an 800m, 1.4m diameter penstock leads to the powerhouse, feeding two 5-nozzle Pelton units.
Improvement of performance	
Increase in output	Total output was increased by increasing intake discharge and hydraulic head by the renewal.
Increase in power production	Annual power production was increased due to the increase in output.

Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
	lustelletion of continui Delten Truching instand of heriographe
Technology	Installation of vertical Pelton Turbine instead of horizontal
	ones in the existing powerhouse.
Cost	N/A
Environmental	Conservation of the natural environment and landscape was
conservation	needed.
Legal restriction	Water permit modification due to the increase of design flow,
	and construction permit approvals.
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	·····
Requirement A:	The existing unit was renewed and upgraded to effectively
Effective use of water	use the unused water discharge and hydraulic head in the
resources	river.
B: Improved and/or	The existing headrace tunnel for free-surface flow was
advanced	replaced by a new pressurized tunnel to increase hydraulic
methodologies	head.
C: Improvement of	N/A
reliability/flexibility	IN/A
corresponding to	
market needs	
Others	N/A
References	[1] <u>https://issuu.com/hydro-exploitation/docs/</u>
	hydroscope_no_26_juin_2016
	[2] https://www.romande-energie.ch/conditions-internet/
	23-grd/romande-energie/154-portes-ouvertes-du-chantier-
	des-farettes
	[3] <u>https://www.romande-energie.ch/entreprises/</u>
	25-communique-de-presse/364-130821-communique-fr

Project code	US01		
Name of the project	Expansion of Abiquiu Hydropower Station		
Location/country of the	New Mexico City, USA		
project			
Implementing body of the	County of Los Alamos		
project	County of Eos Alamos		
Implementing period	2009 – 2012		
Type of the project	Expansion		
Specifications (before the	Expansion		
project)			
	Abiguiu Dower Steign		
Name of power plant	Abiquiu Power Staion Rio Chama River		
Name of river			
Type of power plant	N/A		
Year of commission	1990		
Maximum output (MW)	13.8		
Maximum discharge	36.8		
(m3/s)			
Effective head (m)	N/A		
Annual power	N/A		
production (GWh)	0.355 during the low flow period of November through		
	February		
Specifications (after the			
project)			
Name of power plant	Abiquiu Power Staion		
Name of river	Rio Chama River		
Type of power plant	N/A		
Year of commission	2012		
Maximum output (MW)	16.9 (13.8 + 3.1)		
Maximum discharge	43.9 (36.8 + 7.1)		
(m3/s)			
Effective head (m)	N/A		
Annual power	19.79 (additional)		
production (GWh)	6.27 during low flow period of November through February		
Overview of the project	The 13.8 MW Abiquiu Power Station, which was		
	commissioned in 1990 on the Rio Chama River in New		
	Mexico, USA, could not operate reliably and efficiently during		
	the low flow winter months due to operational limitations of the		
	minimum water use (about 7m3/s). For this reason, a new		
	3.1MW low-flow turbine (horizontal Francis, operating range		
	2-7m3/s) was installed in 2012. This expansion significantly		
	improved the efficiency of power generation through winter,		
	with power generation from November to February increasing		
	by 1700% over the pre-project period.		
Improvement of			
performance			
Increase in output	Total output was increased by adding a low-flow turbine.		
Increase in power	Annual power production was increased due to the increase in		
production	output.		

Reliability/flexibility	Installation of a new low flow turbine allowed the plant to significantly increase its generation through winter and provide additional flexibility year-round.
Others	N/A
Challenges in the project	
Technology	The installation of a new low-flow turbine required the construction of a new powerhouse and cofferdam. In order to complete the in-river work during winter, the permanent cofferdam was designed to be incorporated into the powerhouse structure, thereby allowing for a single year low flow installation period and reducing environmental impacts.
Cost	This project was funded in part by the Recovery Act through the Department of Energy's Wind and Water Power Program.
Environmental	The river was temporarily dewatered, so fish capture/release
conservation	was necessary.
Legal restriction	Permitting requirements posed a challenge because designs had to be finalized in time to allow the permitting approval process before the low-flow period when construction was scheduled to take place.
Others	N/A
Characteristics regarded	
as "Hidden Hydro"	
Classification of	II-1 Development using unused potential
development type	
Requirement A:	Effective utilization of unused potential in the river during
Effective use of water	winter by installing a low-flow turbine.
resources	
B: Improved and/or advanced methodologies	The operation of power station was optimized by installing a low-flow turbine.
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	 [1] IEA Hydro (2016) Annex 11, Case History US.01_Abiquiu https://www.ieahydro.org/media/5fb06b0d/ Vol2_Case_History_English(409-598).pdf [2] <u>https://www.osti.gov/servlets/purl/1044399</u>

Project code	US02		
Name of the project	Renewal of Boulder Canyon Power Station		
Location/country of the	Colorado, USA		
project			
Implementing body of the	City of Boulder, Colorado		
project			
Implementing period	2010 – 2012		
Type of the project	Renewal		
Specifications (before the			
project)			
Name of power plant	Boulder Canyon Hydropower Station		
Name of river	Middle Boulder Creek		
Type of power plant	N/A		
Year of commission	1910		
Maximum output (MW)	20 (The output was reduced to 10MW due to the failure of one		
	unit since 2000.)		
Maximum discharge	N/A		
(m3/s)			
Effective head (m)	N/A		
Annual power	8.5		
production (GWh)			
Specifications (after the			
project)			
Name of power plant	Boulder Canyon Hydropower Station		
Name of river	Middle Boulder Creek		
Type of power plant	N/A		
Year of commission	2012		
Maximum output (MW)	5		
Maximum discharge	1.05		
(m3/s)			
Effective head (m)	557.8		
Annual power	between 11-12		
production (GWh)			
Overview of the project	At the Boulder Canyon Power Station with an output of		
	20MW, which was commissioned in 1910 on Middle Boulder		
	Creek in Colorado, one of the two aged units had been out of		
	service since 2000 due to failure, and the other was in need of		
	renewal. Due to decreases in river flow available for power		
	generation, the remaining unit was oversized and inefficient. It		
	was replaced with a more efficient 5MW Pelton turbine in		
	2012. The new unit had a reduced maximum output, but		
	improved efficiency in the use of river water for power		
	generation, resulting in a 37% increase in annual power		
	production.		
Improvement of			
performance			
Increase in output	No		
Increase in power	Annual power production was increased due to the improved		
production	efficiency in the use of the reduced river flow for power		
	generation with a new small-scale turbine/generator.		

Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	A small-scale turbine/generator was installed and the power generation operation was optimized to match the river flow.
Cost	A small turbine/generator was installed to maximize efficiency and reduce investment costs. On the other hand, the unanticipated replacement and refurbishment of transformer and station equipment resulted in increased costs. This project was funded in part by the Recovery Act through the Department of Energy's Wind and Water Power Program.
Environmental conservation	N/A
Legal restriction	N/A
Others	Special efforts were directed toward documenting the (largely original) interior of the plant and installing new equipment without modifying the plant exterior in order to preserve the historical significance of the facility. In addition, a significant portion of the historical equipment was preserved in place. The hydropower plant is considered eligible for nomination to the National Register of Historic Places due to unique engineering features. Plant modernization had to account for this.
Characteristics regarded	
as "Hidden Hydro"	
Classification of	I-2 Renewal of electro-mechanical equipment changing intake
development type	discharge/hydraulic head III-1 Optimized operation of electro-mechanical equipment
Requirement A: Effective use of water resources	N/A
B: Improved and/or advanced methodologies	A small-scale turbine/generator was installed and the power generation operation was optimized to match the river flow.
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	 [1] IEA Hydro (2016) Annex 11, Case History US.02_Boulder Canyon https://www.ieahydro.org/media/5fb06b0d/ Vol2_Case_History_English(409-598).pdf [2] <u>https://www.osti.gov/servlets/purl/107202</u>

Project code	US03		
Name of the project	Renewal of Cheoah Power Station		
Location/country of the	Robbinsville, North Carolina, USA		
project			
Implementing body of the	Alcoa Power Generating, Inc		
project	Alcoa Fower Generaling, inc		
Implementing period	2010 – 2012		
Type of the project	Renewal/upgrading		
Specifications (before the	Renewai/upgrauing		
project)			
Name of power plant	Cheoah Power Station		
Name of river	Little Tennessee and Cheoah Rivers		
Type of power plant	Dam type		
Year of commission	1919		
Maximum output (MW)	88 for units 1-4 (unit 5 was added in 1941 and renewed in		
	1995)		
Maximum discharge	267		
(m3/s)	201		
Effective head (m)	N/A		
Annual power	N/A		
production (GWh)			
Specifications (after the	Note: Units 1-4 were upgraded and unit 5 was not included in		
project)	the renewal project.		
Name of power plant	Cheoah Power Station		
Name of river	Little Tennessee and Cheoah Rivers		
Type of power plant	Dam type		
Year of commission	2012 (2 units were operational by 2012, the 2 remaining units		
	were replaced after this period)		
Maximum output (MW)	162 (132MW for units 1-4 and 30MW for unit 5)		
Maximum discharge	N/A		
(m3/s)			
Effective head (m)	56.4		
Annual power	Cheoah Power Station		
production (GWh)			
Overview of the project	The Cheoah Hydropower Station, located on the Little		
	Tennessee and Cheoah Rivers in North Carolina, USA, was		
	commissioned in 1919 with a total output of 88MW from units		
	1-4, and unit 5 was added in 1949. Units 1-4 were completely		
	renewed between 2010 and 2012 due to aging and increased		
	risk of failure. The renewal improved equipment efficiency and increased output and annual power generation.		
Improvement of			
performance			
Increase in output	Maximum output was increased by the renewal and upgrade		
	of power units.		
Increase in power	Annual power production was increased due to the increase in		
production	output.		
Reliability/flexibility	Extending the expected life of the plant to 40-50 years as		
	estimated.		
Others	N/A		

Challenges in the project	
Technology	N/A
Cost	This project was funded in part by the Recovery Act through the Department of Energy's Wind and Water Power Program.
Environmental conservation	N/A
Legal restriction	N/A
Others	The project was delayed due to post-2008 recession.
Characteristics regarded as "Hidden Hydro"	
Classification of development type	I-1 Renewal of electro-mechanical equipment without changing intake discharge/hydraulic head
	N/A
Requirement A: Effective use of water resources	N/A
B: Improved and/or advanced methodologies	The aged units were replaced with re-designed high-efficiency turbine/generators.
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	 [1] IEA Hydro (2016) Annex 11, Case History US.03_Cheoah https://www.ieahydro.org/media/5fb06b0d/ Vol2_Case_History_English(409-598).pdf [2] <u>https://www.osti.gov/servlets/purl/1068051</u>

Project code	US101		
Name of the project	Renewal of Ludington Pumped Storage Power Station		
Location/country of the	Michigan, USA		
project	3 , -		
Implementing body of the	Consumers Energy, Detroit Edison		
project			
Implementing period	2013 - 2021 (estimated)		
Type of the project	Renewal/upgrading		
Specifications (before the			
project)			
Name of power plant	Storage Power Station		
Name of river	Lawrence River System (Lake Michigan)		
Type of power plant	Pumped storage type		
Year of commission	1973		
Maximum output (MW)	1872		
Maximum discharge	1886		
(m3/s)			
Effective head (m)	98		
Annual power	N/A		
production (GWh)			
Specifications (after the	As of August 2020, five of the six units had been replaced,		
project)	and the sixth unit was expected to be completed in 2021.		
Name of power plant	Ludington Pumped Storage Power Station		
Name of river	Lawrence River System (Lake Michigan)		
Type of power plant	Pumped storage type		
Year of commission	2021 (estimated)		
Maximum output (MW)	2160		
Maximum discharge	2160		
(m3/s)			
Effective head (m)	98		
Annual power	N/A		
production (GWh)			
Overview of the project	At the Ludington Pumped Storage Power Station in Michigan,		
	which was commissioned in 1973 with a maximum output of		
	1872MW, five of the six pump-turbines and peripheral		
	equipment were renewed and upgraded during 2013-2020.		
	The remaining unit was expected to be upgraded by 2021.		
	The upgrades improved pump-turbine efficiency, output,		
	pumping discharge, and cavitation performance, increasing		
Improvement of	peak supply capacity.		
Improvement of performance			
Increase in output	Maximum output was increased by the increase of maximum		
	discharge and efficiency of turbines.		
Increase in power	N/A		
production			
Reliability/flexibility	The reliability and flexibility of power plant operation were		
	improved by increasing peak supply capacity.		
Others	N/A		

Challenges in the project	
Technology	N/A
Cost	N/A
Environmental conservation	N/A
Legal restriction	In the United States, regulations for inland transportation of power generation equipment varied from state to state, resulting in complicated procedures.
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	I-2 Renewal of electro-mechanical equipment changing intake discharge
Requirement A: Effective use of water resources	N/A
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	The reliability and flexibility of power plant operation were improved by increasing peak supply capacity.
Others	N/A
References	 [1] ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER LICENSE https://www.ferc.gov/sites/default/files/ 2020-06/P-2680-113-EA.pdf [2] hydro review https://www.toshiba.com/taes/cms_files/hydro_review.pdf

Project code	US102		
Name of the project	Renewal of Alabama Power Company's Power Stations		
Location/country of the	Alabama, United States		
project			
Implementing body of the	Alabama Power Company		
project			
Implementing period	2010 – 2014		
Type of the project	Renewal		
Specifications (before the			
project)			
Name of power plant	Lay (unit 1 & 4)	Bouldin (unit 2)	Jordan (unit 4)
Name of river	Coosa River	Coosa River	Coosa River
Type of power plant	Dam type	Dam & waterway	Dam type
		type	
Year of commission	1914	1968	1927
Maximum output (MW)	177	225	100
Maximum discharge	N/A	N/A	N/A
(m3/s)			
Effective head (m)	N/A	N/A	N/A
Annual power	N/A	N/A	N/A
production (GWh)			
Specifications (after the		s of the existing power	
project)	same as those before the project except for annual power		
	production.		
Name of power plant	Lay (unit 1 & 4)	Bouldin (unit 2)	Jordan (unit 4)
Name of river	Coosa River	Coosa River	Coosa River
Type of power plant	Dam type	Dam & waterway	Dam type
	0040 0044	type	0040 0044
Year of commission	2010 – 2014	2010 – 2014	2010 – 2014
Maximum output (MW)	177	225	100
Maximum discharge (m3/s)	N/A	N/A	N/A
Effective head (m)	N/A	N/A	N/A
Annual power	Average 10.9%		
production (GWh)	increase per unit	Average 10.9% increase per unit	Average 10.9% increase per unit
Overview of the project		Alabama Power Com	
		s at three of the hydro	
	in east-central Alabama under licenses issued by the Federal Energy Regulatory Commission. The renewal included the		
	replacement of the 1940s to 1960s old-type turbines with state-of-the-art turbines to increase generation capacity and		
		unit reliability. The refu	
	gate components, t	urbine shafts, and gen	erator brake system
		ced, and new seals in	stalled. Units were
	re-aligned.		
Improvement of			
performance			
Increase in output		No	
Increase in power	Average power increase per unit of 10.9%		
production			

Reliability/flexibility	The four upgraded units should provide more reliable service and reduced maintenance for a significant number of years.
Others	and reduced mantenance for a significant number of years.
Challenges in the project	
Technology	N/A
Cost	Unanticipated costs from additional work required.
Environmental conservation	N/A
Legal restriction	N/A
Others	Delays caused by heavy rain events and changes in vendor ownership (contract had to be re-negotiated). Delays were also caused by testing/modeling of performance, which took longer than anticipated.
Characteristics regarded as "Hidden Hydro"	
Classification of	I-1 Renewal of electro-mechanical equipment without
development type	changing intake discharge/hydraulic head
Requirement A:	N/A
Effective use of water	
resources	
B: Improved and/or advanced	Replaced old turbines with re-designed, high-efficiency turbines.
methodologies	Gate components were refurbished for more effective wicket
methodologies	gate operation.
C: Improvement of reliability/flexibility	N/A
corresponding to market needs	
Others	N/A
References	[1] https://www.osti.gov/servlets/purl/1177138

Project code	VU101
Name of the project	Expansion of Sarakata River Power Station
Location/country of the	Santo Island, Vanuatu
project	
Implementing body of the	Vanuatu Ministry of Lands and Natural Resources
project	vanuatu winistry of Lands and Natural Nesources
Implementing period	2007 – 2009
Type of the project	Expansion
Specifications (before the	
project)	
Name of power plant	Sarakata River Power Station
Name of river	Sarakata River
Type of power plant	Waterway type
Year of commission	1995
	0.6
Maximum output (MW) Maximum discharge	2.9
(m3/s)	2.3
Effective head (m)	27.8
Annual power	N/A
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Sarakata River Power Station
Name of river	Sarakata River
Type of power plant	Waterway type
Year of commission	2009
Maximum output (MW)	1.2
Maximum discharge	5.8
(m3/s)	
Effective head (m)	27.8
Annual power	N/A
production (GWh)	
Overview of the project	Sarakata River Power Station was built in 1995 on Santo
	Island, Vanuatu, with an output of 0.6MW and was the main
	source of power supply to the city of Luganville. However, as
	electricity demand increased, the plant needed to be
	expanded, and a new 0.6MW unit was added in 2009.
Improvement of	
performance	
Increase in output	Maximum output was increased by the expansion of existing
	power station.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	Landslide protection work on the foundation and slopes
	around the existing headrace channel

Cost	The project was funded by the Japan International Cooperation Agency and the Government of Vanuatu.
Environmental	N/A
conservation	
Legal restriction	N/A
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-1 Development using unused potential
Requirement A:	Effective utilization of unused potential in the river by
Effective use of water	increasing maximum discharge.
resources	
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to	N/A
market needs	
Others	N/A
References	[1] JICA ODA: The Project for Improvement of Sarakata River Hydroelectric Power Station
	https://www.jica.go.jp/oda/project/0614000/index.html

Project code	ZWE101
Name of the project	Expansion of Kariba South Power Station
Location/country of the	Mashonaland West Province, Zimbabwe
project	
Implementing body of the	Zimbabwe Power Company (ZPC)
project	
Implementing period	2015 – 2018
Type of the project	Expansion
Specifications (before the	
project)	
Name of power plant	Kariba South Power Station
Name of river	Zambezi River
Type of power plant	Dam Type
Year of commission	1959 – 1962
Maximum output (MW)	750 (125 x 6units)
Maximum discharge	N/A
(m3/s)	
Effective head (m)	86
Annual power	5000
production (GWh)	
Specifications (after the	
project)	
Name of power plant	Kariba South Power Station
Name of river	Zambezi River
Type of power plant	Dam Type
Year of commission	2018
Maximum output (MW)	1050 (125 x 6units, 150 x additional 2units)
Maximum discharge	376 (additional 2 units)
(m3/s) Effective head (m)	86 (Gunita) 80 (additional 2 unita)
Annual power	86 (6units), 89 (additional 2 units) N/A
production (GWh)	
Overview of the project	Kariba South Power Station was built in 1959 along with the
	Kariba Dam on the Zambezi River in Zimbabwe, and six units
	with a total output of 750MW were commissioned between
	1959 and 1962. Two new units were added in 2018 to
	increase peak supply capacity by utilizing the overflow at the
	dam, making it the largest hydropower plant in the country
	with a total output of 1050MW.
Improvement of	
performance	
Increase in output	Maximum output was increased by the expansion of power
	units.
Increase in power	Annual power production was increased due to the increase in
production	output.
Reliability/flexibility	N/A
Others	N/A
Challenges in the project	
Technology	N/A

Cost	N/A
Environmental	N/A
conservation	
Legal restriction	The water intake allocation is managed by the Zambezi River Authority (ZRA), which is formed by the Zimbabwe and Zambia governments.
Others	N/A
Characteristics regarded as "Hidden Hydro"	
Classification of development type	II-1 Development using unused potential
Requirement A: Effective use of water resources	New units were installed to effectively use the unused potential at the existing intake dam. Increase of power discharge increased maximum output and annual power production.
B: Improved and/or advanced methodologies	N/A
C: Improvement of reliability/flexibility corresponding to market needs	N/A
Others	N/A
References	 [1] Zimbabwe Power Company (ZPC) <u>http://www.zpc.co.zw/powerstations/2/</u>kariba-south-power- station [2] SYSTEM DEVELOPMENT PLAN Zimbabwe Electricity Transmission & Distribution Company https://rise.esmap.org/data/files/library/zimbabwe/ Cross%20Cutting/CC%202.pdf

APPENDIX B HYDROPOWER GENERATION FROM ENVIRONMENTAL FLOWS: CHARACTERISTICS AND CHALLENGES

Installing a new facility that generates hydroelectric power using environmental flows (e-flows) release at existing power station is one of the ways to improve the performance of existing power station with untapped energy production. Most of hydropower facilities have ensured the release of steady water flows from the intake dam for the purpose of maintaining river environments in a section of reduced water flows below the dam. In recent years, the increased focus on renewable energy development has increased the installations of power generation equipment using e-flows release to increase output and power generation. However, most of the development opportunities have faced civil and electrical challenges, such as economic efficiency, topographical restrictions for the installation of equipment, turbine type selection, and control of water flows for power generation. Here follows a summary of characteristics, challenges and solutions regarding e-flows power generation based on the case history study in the IEA Hydro Task 16 subtask 2. Case history data are summarized in Tables 1 and 2.

B.1 What is E-flows?

In Japan, the e-flows rate is determined considering the protection of plants and animals, fisheries, and attractive scenery, as well as the prevention of river pollution. Regarding the installation of hydropower facilities in Japan in accordance with the River Act, the river administrator permits the use of water with stipulations that prioritize the release of water flows necessary to not interfere with existing water use and to manage downstream river environments. Water is then taken from the remaining flow below the maximum permitted intake. In pumped-storage power stations, the stored water in the lower reservoir is pumped to generate electricity, so the river inflow to the reservoir is not stored but released downstream to preserve river environments.

Cases in other countries demonstrate similarities with situations found in Japan, where regulatory bodies licensing or relicensing of electricity producers require e-flows to protect river environments below dams.

B.2 Results of developing hydropower from e-flows

Tables 1 and 2 summarize case history data regarding e-flows power generation collected in subtask 2, including 31 cases from Japan and 4 cases from other countries.

In Japan, the time of large-scale hydropower development has come and gone, and small-scale hydropower is being promoted as renewable energy. Hydropower generation from e-flows is one example of this. While dams conventionally discharge e-flows through pipes and valves or flood gates, the number of hydropower facilities adding water turbines and generators for e-flows while updating discharge methods is growing. Most of these were implemented when the water rights of existing hydropower facilities underwent renewal after the year 2000. This period coincides with the enforcement of renewable portfolio standards (RPS) policy–driven support for renewable energy development, including hydropower generated from e-flows (enforced in

2003), and it seems some operators other than electric power companies were given support for their development of e-flows hydropower.

Most of these e-flows projects generate a small amount of hydropower, less than 500 kW, with water use set at a maximum that exceeds the standard values of e-flows (0.1 to $0.3 \text{ m}^3/\text{s}/100 \text{ km}^2$), generally less than 1.0 to 3.0 m³/s. Because the layout of these hydropower facilities has the water discharging after generating hydropower directly below the dam, the hydraulic head often varies from 10 to 50 m, depending on the dam height. Some hydropower facilities, however, boast a high head of approximately 100 m (the highest being the Okutadami E-flow Power Station, at 130.3 m).

B.3 Characteristics of e-flows hydropower

B.3.1 Hydropower facility layout

B.3.1.1 Water intake and water conveyance equipment

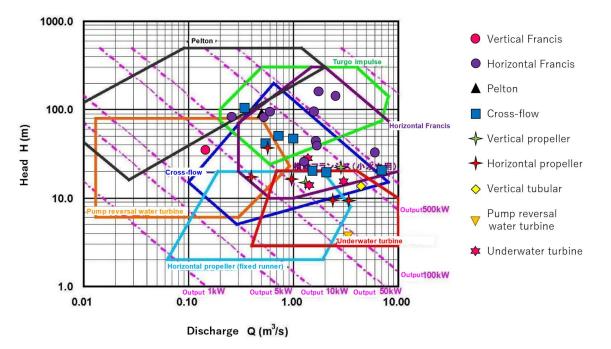
In most layouts, water is taken from the dam by diverting it from the existing hydropower water conveyance equipment and conveying it to the generator directly below the dam. Due to the difference in the type of power generation in existing hydropower facilities, penstock is made to branch from the existing canal (of dam and waterway type) or existing penstock (of dam type) and connect to a powerhouse directly below the dam (Houri No. 2 Power Station and Shin-Tonami Power Station).

When the intake is independent of the existing hydropower facility, the existing e-flows equipment within the dam body may be used, and hydropower equipment like water turbines and generators may be added to the end of the discharge outlet (as in the Dashidaira Power Station). There are some instances where new e-flow equipment has been installed in the dam, where the outlet required drilling into the dam body (as in the Shin-Kushihara Hydropower Station), or a siphon was installed as a simple outlet (Okuwanojiri Power Station).

Because e-flows hydropower facilities are installed directly below dams, and because water intake and conveyance equipment must be installed under the constraints of local topography and existing power station structures, design and construction efforts aimed at layouts enabling greater efficiency and cost savings are much in demand.

B.3.1.2 Hydropower facility

Because existing hydropower facilities obliged to release e-flows often have dams and waterways that create areas with recessed water levels, discharge is made to flow out directly below the dam. Therefore, e-flows hydropower equipment is either installed in new hydropower facilities directly below dams (as in the Houri No. 2 Power Station) or added inside existing powerhouses (as in the facility at Okutadami E-Flows Power Station). These sites, being directly below dams, are geographically narrow and lack access to well-maintained roads, which must be thoroughly considered, as these factors put considerable limitations on the facilities' design and construction.


In some instances (as in the Kawabaru E-flows Power Station), the difficulty of installing hydropower equipment has led to the omission of the powerhouse thanks to the installation of underwater turbines (which perform well submerged). Generators are stopped, and turbine inlet

valves are closed when turbine interiors must be inspected. However, because e-flows rates must be maintained, bypass pipes are attached to the ends of the penstock as an alternate outlet.

New North Fork hydropower plant using e-flows (USA) is an example that established an innovative upstream fish passage system installed at the outlet of the power plant for fish protection measures. Water discharge from turbines is routed from the outlet through a screened floor of a concrete fish trap. Fishes are attracted to the trap through a slotted fish entrance, which then lifts the fish to the top of the dam on a tram via a transport hopper. A model test demonstrated that the configuration could achieve the desired flows and resulted in a satisfactory tailrace diffuser strategy.

B.3.2 Water turbine

When selecting water turbines used in generating hydropower from e-flows, stakeholders must consider not only the effective head and volume of water used, but also any fluctuations in flow rate and turbine head due to changes in reservoir water levels. Figure 1 shows turbine models used in each case history listed in Table 1 on the small-scale turbine selection diagram.

Cross-flow turbines are prevalent in turbine-type operations, with propeller turbines being common for relatively low flow and Francis turbines for high flow rates. The cross-flow turbine's simple structure is characterized by its ease of use and maintenance, ability to adjust flow rate with its guide vane, wide operation range, and affordability. Because it is a type of impulse turbine, the runner position must be higher than the tail water level, giving the cross-flow turbine the disadvantage of being unable to fully utilize the head. Unlike the cross-flow turbine, the Francis turbine is perpetually filled with water from the runner to the draft tube, meaning the

head from the turbine to the tailwater level can be used effectively and the flow rate adjusted. For low head, propeller turbines are suitable, as they are installed where neither the head nor the flow rate fluctuates because its ability to adjust flow rate is removed from the turbine itself to reduce cost. Among propeller turbines, underwater turbines boast few installation restrictions because the turbine and generator are integrated into one unit and installed underwater in the piping, omitting the need for a powerhouse.

Ultimately, turbine selection requires consideration of the characteristics of each unique site (topography around existing dams, reservoir operation, etc.) and comparison of economic, maintenance, flow control, and quality control factors.

B.3.3 Hydropower discharge control

The volume of water used to generate hydropower from e-flows must always exceed the e-flows rate against the dam's fluctuating water levels. Hydropower generation falls into one of three types of operations: (i) fixed discharge via adjustments to the outlet controls (the e-flows rate is also the maximum volume of water permitted for use, a rate which is maintained regardless of the dam's water level), (ii) outlet devices have fixed intervals of closure (the e-flows rate is set to the flow rate at the lowest water level, while the maximum discharge is set to the flow rate when the water level is at full capacity), and (iii) outlet devices have fixed intervals of closure and output is fixed (outlet devices are fixed down to normal water level, while the output is fixed above normal water level). The type of operation informs the selection of applicable turbines.

Of these, operations with (ii), fixed outlet devices, do not require flow rate adjustment controls. This holds the advantage, therefore, that a simple turbine with a fixed runner mechanism may be installed, like a propeller turbine. It is necessary to note, however, that because it will use more flow than essential to generate power, the volume of water used in an existing power station will be reduced, resulting in a decrease in total electrical output. Still, compared to the days before e-flows hydropower operation, when spillway gates and dam outlets lacked automated controls, discharge exceeded required flow rates, and existing facilities' power generation was unavoidably reduced, the use of water resources could be said to have been greatly improved by today's practices.

At the hydroelectric power plant for the Castelo do Bode (Dam type) in Portugal, primary and secondary (smaller) turbines produce hydropower from discharge, outlet devices were installed directly below the dam to support e-flows, and controls enabling interconnectivity between these devices and a device to connect to the power grid were added. The combined operational pattern enabled by its primary and secondary turbines is optimized for e-flows rates that change month by month.

B.4 Challenges and solutions in developing hydropower from e-flows

B.4.1 Civil engineering challenges

E-flows facilities involve generator equipment being newly installed in existing dams and power stations. The challenge here, however, is the construction of simple facilities to reduce costs as well as utilize existing equipment as much as possible. Existing outlet in the dam is used for e-flows generation facilities by installing generator equipment, but it should be noted that small diameter of pipe will increase head loss. The simple siphon pipe is installed when the water intake is independent of the existing hydropower facility. This can be done without considering

the effects on the dam itself, unlike the process of installing new outlet devices that involve drilling into the dam, and there are instances (such as the Aihara Power Station) where turbine inlet valves have been omitted. However, measures must be taken against siphon break caused by siphon water column separation and air entrainment vortex generation at the siphon opening when siphon height is increased at a low reservoir water level.

The powerhouse is built below the dam in a topographically narrow space and requires some ingenuity in design and construction to keep it from becoming submerged during flooding. There are instances where this flooding issue was circumvented and the powerhouse was omitted because underwater turbines have built-in generators (like the Kawabaru E-Flows Power Station), as well as instances where space was lacking below the dam for a powerhouse and generator equipment was instead installed in the shaft of an outlet side wall (as in the Koami Power Station and Akiba No. 3 Power Station). Instances like the following took safety and costs into consideration when conducting in-stream construction directly below the dam: construction of a cofferdam to install a generator facility was restricted to seasons not prone to flooding (Okuwanojiri Power Station), restrictions on dewatering and drilling and blasting required to install generator equipment outside the side wall (Koami Power Station), and a horizontal propeller turbine was installed in an existing tunnel originally used to build the dam (Kagehira Power Station).

B.4.2 Electrical challenges

It is required that the maximum discharge of turbines generating hydropower from e-flows always exceeds the necessary e-flows rate and adapt to seasonal changes in flow rates and water levels in the reservoir. Many types of turbines satisfy these requirements, but selection between them must comprehensively take into consideration of equipment cost, maintenance management, and flow rate control.

Because the guide vanes of underwater turbines are fixed (meaning their flow rates cannot be adjusted), it is necessary to match the volume of water used when the dam water level is low to the e-flows rate, and to set the intake flow rate when the dam is at full capacity as the maximum discharge for use. The required e- flows rate may therefore be exceeded by this operation and the total output including that of the existing power station may be reduced, making it necessary to compare maintainability and economic efficiency of electrical options including that of the civil engineering equipment (e.g., powerhouse omissible).

Consider cases illustrating the effective use of general-purpose horizontal propeller turbines, where a single horizontal propeller turbine would have been installed with a higher head than the device was designed for. So, two units were installed in a line, dividing the head practically in half (as in the Kagehira Power Station.)

B.4.3 Challenges in cost reduction

Because the unit price of e-flows hydropower is modest, there is little benefit and significant cost to stakeholders scaling up their operations. Therefore, unless the generated hydropower is used to power the generator facilities themselves or is included in the power generation cost of an existing power station, stakeholders may find the hurdles set quite high for developing it as a new power source. In Japan, those adopting e-flows hydropower would find renewable energy subsidies indispensable. While RPS policies (2003 to 2012) and feed-in tariff (FIT) policies

(post-2012) do support small hydropower (including e-flows hydropower) development, such efforts remain as modest as they were before the year 2000.

Fees for electrical work on turbines, generators, and the like account for much of the construction costs of e-flows hydropower. Reducing equipment costs will therefore become pivotal in a plan to improve economic efficiency. Such a plan will require (i) selection of turbines from a standard product lineup, (ii) simplification of specifications that take into consideration the conditions of use and installation and selection of affordable turbines, and (iii) arrangements that include bulk purchases including auxiliary electrical equipment.

Power Station	i Provider	Construc	Drainage Area	Dam	Dam Height	E-flows rate	Specific E- flows rate	Р	Q	Не	Е	Turking Ture
Power Station	Provider	tion Period	(km²)	Туре	(m)	(m³/s)	(m³/s/100 km²)	(kW)	(m³/s)	(m)	(MWh)	Turbine Type
Houri No. 2	Miyazaki Pref. Enterprise Bureau	2010-12	45.2	CG	60.0	0.14	0.31	35	0.14	34.75	209	Vertical Francis
Tsuchimurokawa	TEPCO	1996-99	13.5	CG	105.2	_	—	350	0.50	89.94	1225	3-Nozzle Horizontal Pelton
Kawabaru E-flows	Kyushu Electric Power Co.	2010-11	359.2	CG	23.6	N/A	—	150	1.40	12.78	1300	Underwater turbine
Kagehira	Shikoku Electric Power Co.	2009-10	270.8	CG	62.5	0.54	0.20	150	0.58	37.24	N/A	Horizontal propeller
Okutadami E-flows	JPOWER	1999-03	595.1	CG	157.0	2.56	0.43	2700	2.56	130.30	N/A	Horizontal Francis
North Fork Skokomish	USA	2009-13	N/A	CA/CG	71.60	2.8~8.5	—	3600	3.40	N/A	22000	Vertical Francis
Dashidaira	KEPCO	2013-14	461.2	CG	76.7	1.68	0.36	520	1.76	37.29	2290	Horizontal Francis
Isawa No. 4	Iwate Prefecture Enterprise Bureau	2011-12	N/A	CG	Approx. 25.0	1.90	—	170	2.28	9.85	1193	Horizontal propeller
Shin-Tonami	Gunma Prefecture Enterprise Bureau	2010-11	635.3	CG	40.0	1.83	0.29	1000	7.00	20.49	4000	Cross-flow
lino	Tohoku Electric Power Co.	2013-14	2756.0	CG	21.5	3.00	0.11	230	3.20	9.57	1699	Horizontal propeller
Shin-Kushihara	Chubu Electric Power Co.	2014-15	514.2	CG	38.0	1.49	0.29	230	1.56	19.80	1700	Cross-flow
Okuwanojiri	KEPCO	2010-11	1341.8	CG	32.1	2.70	0.20	480	2.82	22.50	3750	Vertical propeller
Kuttari	JPOWER	2013-15	940.0	RF	27.5	4.00	0.43	470	4.40	13.40	N/A	Vertical tubular
Doshi Dam	Kanagawa Pref. Enterprise Bureau	2005-06	112.5	CG	32.8	0.30	0.27	50	0.40	18.50	280	Horizontal propeller
Azuma No. 2	Gunma Prefecture Enterprise Bureau	2004-06	254.0	CG	140.0	0.33	0.13	240	0.33	100.12	1864	Cross-flow
Koami	Tochigi Prefecture Enterprise Bureau	2006-07	606.1	CG	23.5	1.15	0.19	130	1.31	14.00	987	Horizontal propeller
Takato Sakura	Nagano Prefecture Enterprise Bureau	2015-17	377.4	CG	30.9	0.96	0.25	199	1.10	23.00	199	Horizontal Francis
Aihara	Yamaguchi Pref. Enterprise Bureau	2013-14	543.0	CG	7.8	N/A	—	82	3.20	3.87	328	Pump reversal water turbine
Akiba No. 3 (small turbine)	JPOWER	1988-91	4490.0	CG	89.0	6.00	0.13	1700	6.00	32.90	N/A	Horizontal Francis

Table 1 Case histories of e-flows hydropower station: Specifications

Managawa Dam	MLIT	-2003	223.7	CA	127.5	0.67	0.30	490	0.67	95.50	2650	Horizontal Francis
Isawa No. 3	Iwate Prefecture Enterprise Bureau	2011-14	185.0	RF	127.0	1.80	0.97	1500	1.80	105.20	11729	Horizontal Francis
Inekoki	TEPCO	1998-99	470.4	CA	60.0	1.34	0.28	510	1.64	41.33	3015	Horizontal Francis
Kazunogawa Microhydropower	Kandenko	-2014	13.5	CG	105.2	0.25	1.85	160	0.25	82.00	735	Horizontal Francis
Akigami	C-Tech	2015-16	83.3	CG	74.0	0.29	0.34	290	0.73	50.33	1330	Cross-flow
Sakore	C-Tech	2017-18	770.0	CG	18.0	2.78	0.36	380	3.03	14.81	2660	Underwater turbine
Ayado	TEPCO	-1998	1696.6	CG	14.5	4.23	0.25	670	11.23	8.06	N/A	Vertical propeller
Hitotsuse E-flows	Kyushu Electric Power Co.	-2013	445.9	CA	130.0	0.90	0.20	330	0.90	50.42	2200	Horizontal Francis
Higashigochi	Chubu Electric Power Co.	-2001	329.2	CG	69.0	0.55	0.17	170	0.55	40.62	N/A	Cross-flow
Shin-Okuizumi	Chubu Electric Power Co.	2017-18	464.60	CG	44.5	N/A		320	2.07	19.00	1300	Cross-flow
Kamishiiba E-flows	Kyushu Electric Power Co.	-2013	223.6	CA	110.0	0.52	0.23	330	0.52	81.40	2400	Horizontal Francis
Hegsetdammen kraftverk	Norway	-2015	1527.00	CA	30.0	1.50	0.001	280	1.20	29.40	350	Underwater turbine
Castelo do Bode	Portugal	-2020	3950.00	CA	115	0.64- 26.32	0.00016- 0.0067	194	3.00	93.70	8321.00	Horizontal Francis
Wonorejo Dam	Indonesia	-2002	N/A	RF	100.0	N/A		200	0.95	15.00	N/A	Horizontal propeller
Kyogoku Meisui no Sato	HEPCO	2016	51.3	RF	54.0	3.3	0.06	730	3.3	29	1700	Horizontal propeller
Torao	TEPCO	2011	31.2	CG	120.0	0.35	0.01	270	0.35	101	1600	Horizontal Francis

Table 2 Case histories of e-flows hydropower station: Characteristics

Power Station	E-flows Discharge Method	Characteristics of E-flows Hydropower Generation
Houri No. 2	Hydropower is generated by discharging water	E-flows from Houri Dam was operated at a higher flow rate than specified via manual
	directly below the dam from penstock branching	adjustments to the gate added to the outlet of pipe to adapt to changes in water levels. Installing
	from the headrace of the existing Hori Power	e-flows hydropower facilities has enabled automatic adjustment to the required flow rate and
	Station (dam and waterway type).	therefore increased volume of water used for hydropower generation at the existing Hori Power Station (vertical Francis).
Tsuchimurokawa	E-flows discharges directly below the dam from a	The power station's flow rate was made to be adjusted as part of the dam's discharge controls,
	selective intake device installed in the existing	and the target flow rate was adjusted by combining the controls to open the turbine needle valve
	pumped-storage lower dam, generating	and switch nozzles when generating hydropower and controlling the outlet gate when
	hydropower.	hydropower generation is stopped.
Kawabaru E-flows	Hydropower generates from water discharged	To improve economic efficiency and maintainability, an underwater turbine-generator was
	directly below the dam from penstock branching	installed, eliminating the need for a powerhouse and therefore simplifying the facility.
	from the headrace of the existing Kawabaru Power	
	Station (dam and waterway type).	
Kagehira	Hydropower generates from water discharged	By installing two affordable horizontal propeller turbines in a row inside a narrow existing tunnel
	directly below the dam from penstock branching	(used during construction), stakeholders saved space, adapted the facility to the high head, and
	from the intake of the existing Kagehira Power	adjusted the facility for a fixed flow rate in response to fluctuating water levels in the dam. No
	Station (dam and waterway type).	single turbine would have fulfilled the requirements of the 37.24 m head in the plans.
		Stakeholders therefore decided the high head would be split between two horizontal propeller
		turbines installed in a row.
Okutadami E-	Hydropower generates from water discharged	The e-flows hydropower facilities were installed using the e-flows discharge devices installed in
flows	directly below the dam from penstock branching off	the expansion of the Okutadami Power Station. An easily maintained horizontal Francis turbine
	from the penstock of the existing Okutadami Power	with a head ratio (Hmax/Hmin) of 2.05 was installed. Stakeholders also planned ahead so when
	Station (dam and waterway type).	the existing primary No. 1 penstock stopped running e-flows, the alternative No. 4 penstock
		would be used to run e-flows for discharge.
North Fork	Water turbine-generator installed in existing e-flows	The new North Fork hydropower facilities (Francis turbines) were installed directly under the
Skokomish	outlet discharges water directly below the dam.	Cushman No. 2 dam to use the e-flows discharged through a discharge valve. A fish ladder was also constructed.
Dashidaira	Water turbine-generator installed in existing e-flows	Water turbine-generator was installed on the end of Dashidaira Dam's existing e-flows discharge
	outlet discharges water directly below the dam.	pipe, conveying water to the water turbine-generator. To adapt to seasonal fluctuations in e-flows
		as well as changing dam operation water levels, stakeholders had a turbine-generator with
		adjustable speed (horizontal Francis) installed.
Isawa No. 4	Hydropower generates using e-flows discharges	Isawa No. 4 Power Station is a small hydropower station using both irrigation water and the e-
	water directly below the dam siphoned from the	flows discharged from Isawa No. 2 Power Station's Wakayanagi intake weir (intake device) into
	existing Isawa No. 2 Power Station's Wakayanagi	the Isawa River. The horizontal propeller turbine can adapt to fluctuations in flow rate and head.
	intake weir.	One of the site's characteristics is its use of a siphon to take in water without affecting existing
		facilities, as well as the installation of an alternative discharge pipe so e-flows may continue at
		the standard flow rate when hydropower discharge is stopped.

Shin-Tonami	The intake and headrace of existing Tonami Power Station are shared and water redirected via penstock and discharged downstream of dam.	The power station uses the outflow from Hiraide Dam not used for hydropower generation as well as e-flows to improve the river environment downstream of Hiraide Dam.
lino	Water flows through the existing Horai Power Station (dam and waterway type) intake and through the new generator facility and outlet, which is connected to the Horai Power Station intake sediment drainage channel and discharges downstream of the dam.	The e-flows hydropower station makes use of e-flows discharged from the intake dam of the existing Horai Power Station. So as not to let values fall below the e-flows rate, stakeholders set the maximum discharge for e-flows hydropower generation after considering its fluctuations (approximately 5% of the flow rate) caused by output fluctuations at the Horai Power Station connected directly to the intake weir. They also installed a simple horizontal propeller turbine-generator to cut costs and shorten the construction period.
Shin-Kushihara	A new intake device flows water from the right bank upstream of the dam, and water is conveyed downstream of the dam via penstock to the generator facility. Previously, e-flows were discharged from the spillway gates.	The e-flows hydropower station (with a cross-flow turbine) makes use of e-flows discharged from the intake dam serving the Yahagi No. 2 Power Station. Factors considered and measures implemented include the narrowness of the construction side, penetration of the existing concrete dam body, and a wire sawing method to cause less vibration for the existing structure. Compared to an e-flows rate of 1.49 m ³ /s, the maximum discharge was determined after considering the ±2.5% variance due to dam water level fluctuations, ultimately adding 5% for 1.56 m ³ /s. Additionally, Yahagi No. 2 Power Station was able to increase output (approximately 400,000 kWh) thanks to the elimination of approximately 0.2 to 0.3 m ³ /s overflow resulting from the use of spillway gate incapable of minor adjustments.
Okuwanojiri	A siphon from a new intake device upstream on the dam's left bank conveys water downstream of the dam via penstock to the generator facility. Previously, e-flows were discharged from the spillway gates.	The site was modified to allow the e-flows rate to be discharged according to the volume used for hydropower generation even when the dam's operational water levels are at their lowest. Because an underwater turbine was used, the powerhouse could be omitted. Out of consideration for safety and the cost of in-stream construction directly below the dam, the construction period for work on the cofferdam was restricted to seasons not prone to flooding.
Kuttari	With the existing e-flows outlet device installed on the dam's left bank, a new water turbine generator was installed in the outlet valve room. After generating hydropower, water discharges directly below the dam.	The e-flows hydropower facilities were installed at Kuttari Dam, which was already serving the existing Kumaushi Power Station. Compared to an e-flows rate of 4.00 m ³ /s, the maximum discharge was determined after considering the variance due to dam water level fluctuations and control of the generator, ultimately adding 5% for 4.20 m ³ /s, with an upper and lower limit of 4.4 and 4.0, respectively. An S-type tubular turbine was installed for its environmental friendliness (high performance against oil leaks).
Doshi Dam	Water is redirected from the headrace of the existing Doshi No. 1 and No. 2 Power Stations (dam and waterway type) and is discharged directly below the dam to generate hydropower. Previously, pumps rerouted the water for outflow.	The e-flows hydropower facilities (horizontal propeller turbine) were installed below Doshi Dam. Because the dam's water level fluctuates by 5 m, or 25% of the total e-flows head of 20 m, stakeholders installed flow rate controls to ensure stable and sufficient e-flows.
Azuma No. 2	Water flows into penstock branching from penstock of the existing Azuma Power Station (dam type) and discharges directly below the dam to generate hydropower.	The e-flows hydropower facilities (cross-flow turbine) were installed at Kusaki Dam, which was already serving Azuma and Odaira Power Stations. Factors considered and measures implemented include an operational pattern adaptive to power generation where the reservoir water level fluctuates ((1) outlet adjustment controls for fixed flow rate; (2) controls for outlets closing at fixed intervals to secure e-flow rate at lowest water level; and (3) controls for both

		outlets closing at fixed intervals and for fixed output) and installation of fixed flow rate controls by adjusting outlets so the existing power station experienced the lowest degree of power reduction. Out of consideration for the existing Azuma Power Station's power level, the maximum discharge was matched with the e-flows rate.
Koami	Water flows from penstock branching off from the headrace of the existing Kawaji No. 2 Power Station (dam and waterway type) and discharges directly below the dam to generate hydropower.	The e-flows hydropower facilities were installed at Koami Dam, which was already serving Kawaji No. 1 and No. 2 Power Stations. The structure lacks guide vanes, resulting in changed output due to the dam's fluctuating water levels. It is worth pointing out that costs were reduced by, rather than installing a new intake, etc., branching and conveying water from the headrace of another existing power station, and construction limitations were dramatically reduced with the decision to install the generator equipment inside the outlet side wall.
Takato Sakura	A siphon takes in water from the existing Takato Dam and conveys water to the generator facility directly below the dam to be discharged.	The e-flows hydropower facilities (horizontal Francis) were installed to take water from Takato Dam, which was already serving Haruchika Power Station. Effects on the dam body from the use of a siphon was mitigated, and maintenance costs were reduced. Because in general turbines are most efficient at 80 to 90% of the maximum discharge, the maximum discharge was determined to be in the range of discharge equivalent to 1.2 m ³ /s (e-flows rate 0.96 m ³ /s / 80%), at 1.10 m ³ /s.
Aihara	Water flows into a siphon from Aihara Dam (which is a re-regulating reservoir for Shin-Abugawa Dam Power Station) and conveyed to the generator facility directly below the dam.	Power is generated by using the head of Aihara Dam (which is a re-regulating reservoir for Shin- Abugawa Dam Power Station, directly below Abugawa Dam) and some of Aihara Dam's discharge. Construction costs were reduced by using a pump reversal water turbine, which removes the need for flow rate adjustment controls by the generator and which was made possible by the shared use of the existing outlet gate. By installing a siphon, stakeholders were able to reduce civil construction costs relating to water intake facilities and omitted the need for an inlet gate.
Akiba No. 3 (small turbine)	After branching off from Akiba No. 3 Power Station's new penstock, water is conveyed to a small turbine inside the same powerhouse to generate hydropower before being discharged directly below the dam.	A new, third power station that would use dam overflow and a small turbine that would use e-flow was installed. The existing Akiba reservoir was getting much inflow, and the No. 1 and No. 2 power stations were generating power, but a new, third power station was built to use overflow Akiba Dam experienced approximately 100 days a year. Small hydropower facilities were built in the third structure.
Managawa Dam	Water branches off from the e-flows outlet, generates hydropower, and discharges directly below the dam.	Managawa Dam was built with flood controls and unspecified irrigation and electricity generation functionalities. Water hardly flowed for approximately 3 km downstream of the dam, which stakeholders sought to remedy through a water and environmental program, which set e-flows to 0.67 m ³ /s. The e-flows were put to use by micro hydropower devices (horizontal Francis) that were installed for dam management.
Isawa No. 3	Water branches off from Isawa No. 1 Power Station's penstock (JPOWER, dam type) and generates hydropower before discharging directly below the dam.	Isawa Dam was built to replace Ishibuchi Dam, and its e-flows came to be used by micro hydropower station (horizontal Francis) installed there. The Isawa No. 1 and No. 3 Power Stations share a powerhouse, penstock, outdoor switchyard, power lines, and the like.

Inekoki	The intake installed in the dam body conveys water to the generator facility directly below the dam before being discharged.	The 510 kW Inekoki Power Station was built to use the e-flows from Inekoki Dam, the intake of which powers Ryushima Power Station.
Kazunogawa	Using the channel redirecting water from the	Kazunogawa Microhydropower Station, a run-of-the-river facility, has an effective head of 82 m
Microhydropower	Kazunogawa Dam, e-flows generate hydropower and discharges directly below the dam.	and an output of 160 kW. It uses the channel redirecting water to Kazunogawa Dam, the lower, second dam for TEPCO's Kazunogawa Pumped Storage Hydropower Station.
Akigami	Water branches from existing e-flows outlet pipe, flowing into the newly installed generator facility before discharging directly below the dam.	Akigami Dam is an intake structure that increases the water storage capacity of Asahi Dam, which serves the operations of the Asahi Power Station. The e-flows from Akigami Dam are used to generate the new Akigami Hydropower Station's rated output of 290 kW.
Sakore	Water flows from the existing intake into a siphon and generator facility in a vertical shaft directly below the dam before discharging.	Higashi-Ueda Dam is an intake structure for Higashi-Ueda Power Station and Chuuro Power Station. Sakore Hydropower Station was built to use the dam's 2.78 m ³ /s e-flows to generate its rated output of 380 kW.
Ayado	An existing channel for large woody debris was reconstructed as a headrace, conveying the dam's e-flows for hydropower generation and discharging the flows directly below the dam.	Ayado Dam is an intake structure for Saku Power Station and Chuuro Power Station. Ayado Power Station was built to use the dam's e-flows to generate its rated output of 670 kW.
Hitotsuse E-flows	Water branches off from the channel between the existing Hitotsuse Dam to the Hitotsuse Power Station, generating hydropower as e-flows and discharging directly below the dam.	Hitotsuse E-flows Power Station is a micro hydropower station built to use Hitotsuse Dam's e- flows to generate 330 kW.
Higashigochi	Water branches off from the existing e-flows outlet pipe to the new generator and discharges directly below the dam.	Higashigochi Hydropower Station is a micro hydropower station (cross-flow turbine) built to use the e-flows discharged from Hatanagi No. 2 Dam. The guide vane is automatically controlled to discharge a fixed volume of water regardless of dam water levels. When not generating power, the adjacent outlet valve opens automatically to release e-flows.
Shin-Okuizumi	Water branches off from the existing e-flows outlet pipe to the new generator and discharges directly below the dam.	Shin-Okuizumi Hydropower Station is a micro hydropower station (cross-flow turbine) built to use Okuizumi Dam's e-flows to generate 320 kW.
Kamishiiba E- flows	A generator was installed for Kamishiiba Dam's e- flows. After generating hydropower, the e-flows discharges directly under the dam.	Kamishiiba E-flows Power Station is a micro hydropower station built to use Kamishiiba Dam's e- flows to generate 330 kW.
Hegsetdammen kraftverk	Water runs from the dam to the e-flows pipe, to be conveyed to the water turbine-generator, where it generates hydropower before discharging directly below the dam.	Hegsetfoss Power Plant was built to use the e-flows from Hegsetdammen, the dam holding the Bjørga reservoir. The power plant generates 280 kW, and it was designed to generate hydropower by using an integrated water turbine-generator due to the positioning of an existing outlet pipe.
Castelo do Bode	Water discharges directly below the dam from the primary and secondary turbines of the existing power station (dam) and the newly installed discharge facilities.	Combined operational patterns are optimized to accommodate required e-flows rates (which change monthly), with the installation of outlet works enabling e-flows directly below the dam as well as primary and secondary turbines generating hydropower with discharge from an existing power station (dam type).

Wonorejo Dam	A water turbine-generator was installed in the discharge facilities of Wonorejo Dam. Water discharges directly below the dam.	At the Wonorejo Hydropower Plant, a water turbine-generator was introduced to generate hydropower from the discharge required of the Wonorejo Multipurpose Dam. The hydropower generated is used for dam management. A pressure-reducing valve for adjusting pressure allows the facility to adapt to changes in dam water levels.
Kyogoku Meisui no Sato	Water flowing from the outlet works generates hydropower and flows through the Kyogoku Dam discharge tunnel. A turbine and generator were installed inside the same dam's gate room.	Kyogoku Meisui no Sato Power Station was built to use water discharged from the outlet works of Kyogoku Dam, the lower (second) dam serving Kyogoku Pumped Storage Power Station built by HEPCO. Penstock was installed to branch from the outlet works and take in water flowing at a maximum of 3.3 m ³ /s. A total of four horizontal propeller turbines were installed, installed two by two in parallel and succession.
Torao	A power station that generates power via the unused head of the channel redirecting the water from the lower (second) dam serving the pumped- storage hydropower station.	To reduce changes in water quality and impact on the ecosystem downstream of the dam, stakeholders built an intake dam upstream of Ueno Dam (the lower, second dam serving Kannagawa Pumped Storage Power Station) to take in river water, redirect it away from the reservoir, and generate power from the outflow from the channel redirecting water downstream of the dam.