

Water Management and Hydropower in the USA

December 9, 2019

Nathalie Voisin

EIA Hydropower Annex IX & XII workshop Hydropower Services and Climate Change: Adaptation Resilience and Valuation of Climate Change Services

Rio de Janeiro - Brazil

PNNL is operated by Battelle for the U.S. Department of Energy

Hydropower in the USA

- Over 2,000 hydropower plants
- 7% of annual electricity generation
- ~25% of generation capacity of the Western USA
- ~half of total hydropower generation is produced by 132 US federal plants

2

Water management in the **USA**

- Over 8000 major dams
- Flood control
- Irrigation,
- Water supply,
- Hydropower
- Recreation
- Environmental regulation (incl. water quality)

Water management in the **USA**

- Over 50% of powered dams operated for multiple objectives
- Multiple institutions comanage reservoir operations

Rule curves support dam operators in managing river systems and dam operations according to regional water laws, regulation and priority in water uses

Couple questions to be addressed

- How does water management support hydropower operations?
- How will water management keep supporting hydropower operations?
- What is the value of hydropower to environmental services? (Annex XII)
- What is the value of hydropower to grid services? (Link with Annex IX)

s? erations? Annex XII) annex IX)

Water management under uncertainty

• Seasonal to short term hydro-climate forecasts

Secure Water Act (S-C Kao), Climate change & stream temperature (M. Wigmosta), CEATI HOPIG, USACE, DHS, etc.

How will water management continue to support hydropower operations?

Chelan PUD Case Study – Hydropower Value Study

- 2 run of the river projects on the Columbia River main stem downstream of Grand Coulee
- 1 storage project on a tributary
- 100% hydro, 1648 MW operational capacity

Chelan PUD Case Study

- Despite variations in water availability, hydropower provides consistent services
- Flexibility in the combination of services may vary based on water availability
- Typically a river-routing reservoir operations model is used to optimize utility-scale benefit under varying market prices and water availability conditions

Average Rocky Reach generation and spinning reserve at 8 a.m. across all months and dry, average, and wet years. Note that units were in maintenance during the average year in the Fall

Valuation of hydropower to environmental services – TVA Case Study

May 2017 Kentucky Lake - TVA 364 363 362 on (ft) 361 हु 360 ш 359 358 **2** 357 354 Mav Jun Aug Sep Oct Nov Dec Mar Apr Jul Jan Normal Operating Zone — Last Year Observed Headwater Observed Headwater

Hydropower contributes to reduce the generation cost and ancillary services

Water management perspective

Water Use	
Flood Control (property damage savings)	
Recreation	
Hydropower Generation	
Navigation	
Water Supply (Need more evaluation)	
Water quality (remediation)	
Cooconally	

Grid service nerspective

Ancillary service	Seasonal value	
Generation		
Load following	Ancillary	
→Capacity Reserve	services	
Frequency regulation	valuation	
Black Start		
?		

Annual	Value	(\$M)
		\$X

Seasonally and daily optimized for multi-use

Sub-hourly optimized for grid services

Magnitude and frequency of hydropower operations vary regionally, and by utility, market, reservoir characteristics, etc.

Challenge of using economic metrics with water management.

12

Regional variations in hydropower contribution to grid services

Regional variations in services to the grid:

- Peak hours in most regions
- And baseload in the Pacific Northwest

Derived from Platts 2011

Hydropower significantly contributes to limiting high electricity production prices

- Hydropower generation is negatively correlated with natural gas electricity generation.
- If hydropower is available, use hydropower for generation and especially when electricity prices are high
- Hydropower also provides ancillary services to the power grid
- Large regional variations in those relationships

Valuation of hydropower for economics and resilience - HydroWIRES

HydroWIRES projects

Provide hydropower scenarios for electricity grid long term reliability studies

Value of hydropower forecast to grid analytics

Improve representation of hydropower in power system models

Catalog hydro-power plant physical and regulatory bounds in operations

Contribution of hydropower to electricity grid resilience

https://www.energy.gov/eere/water/hydrowires-initiative

4405

Concluding thoughts

44.47.57

Thank you

The many futures of hydropower

Power grid changing

- Integration of renewables
- Batteries & demand response
- Deep electrification
- Distributed generation
- New market structures
- Fuel prices
- Increasing electricity demand
- Retiring power plants

Water management is uncertain

- Water availability (Climate Change) - Water uses (C
 - Environmental regulation
 - **Public perception**

How can hydropower contribute to maintain resilience and ensure sustainably economic operations?