Martin Wilkes is a Research Fellow at the Centre for Agroecology, Water & Resilience at Coventry University. Martin's research centres on responses of aquatic biota to anthropogenic stressors. His work is fundamentally ecological, although he works with a variety of colleagues from biology, engineering and social sciences.

FISH-Net: Prior probabilities to support sustainable hydropower planning, design and monitoring IEA Fish & Hydropower Annex, Brussels May 2017

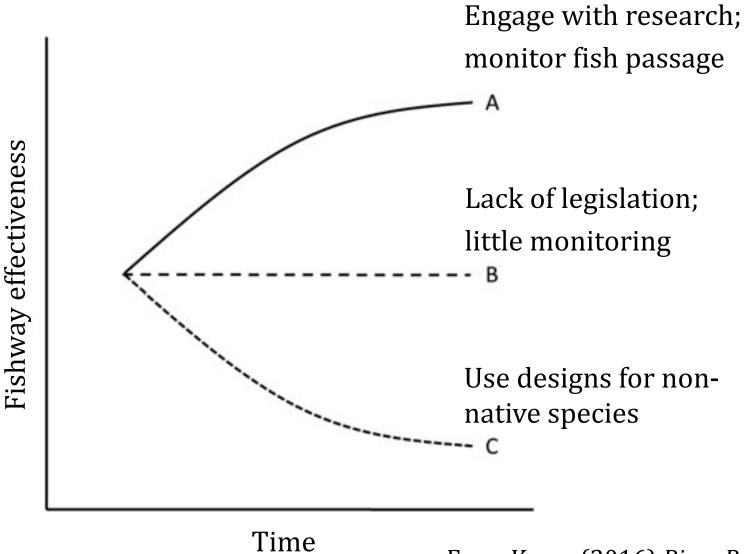
Martin Wilkes (Coventry U.)

Evelyn Habit & Oscar Link (U. Concepción); Luiz Silva (UFSJ) Angus Webb (U. Melbourne); Lee Baumgartner (Charles Sturt U.) Brett Pflugrath (U. New South Wales/NSW Dept. Primary Industries) Craig Boys (NSW Dept. Primary Industries/Charles Sturt U.); Justin O'Connor, Matthew Jones & Ivor Stuart (Arthur Rylah Institute)

Knowledge Exchange for Efficient Passage of Fish in the Southern Hemisphere (KEEPFISH)

Martin Wilkes (Coventry U.); Kim Aarestrup & Niels Jepsen (DTU-Aqua); Bernd Ettmer (HSM); Paul Franklin & Cindy Baker (NIWA); Evelyn Habit & Oscar Link (U. Concepción); Paul Kemp (U. Southampton); Paulo Pompeu (UFLA); Luiz Silva (UFSJ); Angus Webb (U. Melbourne)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 690857.

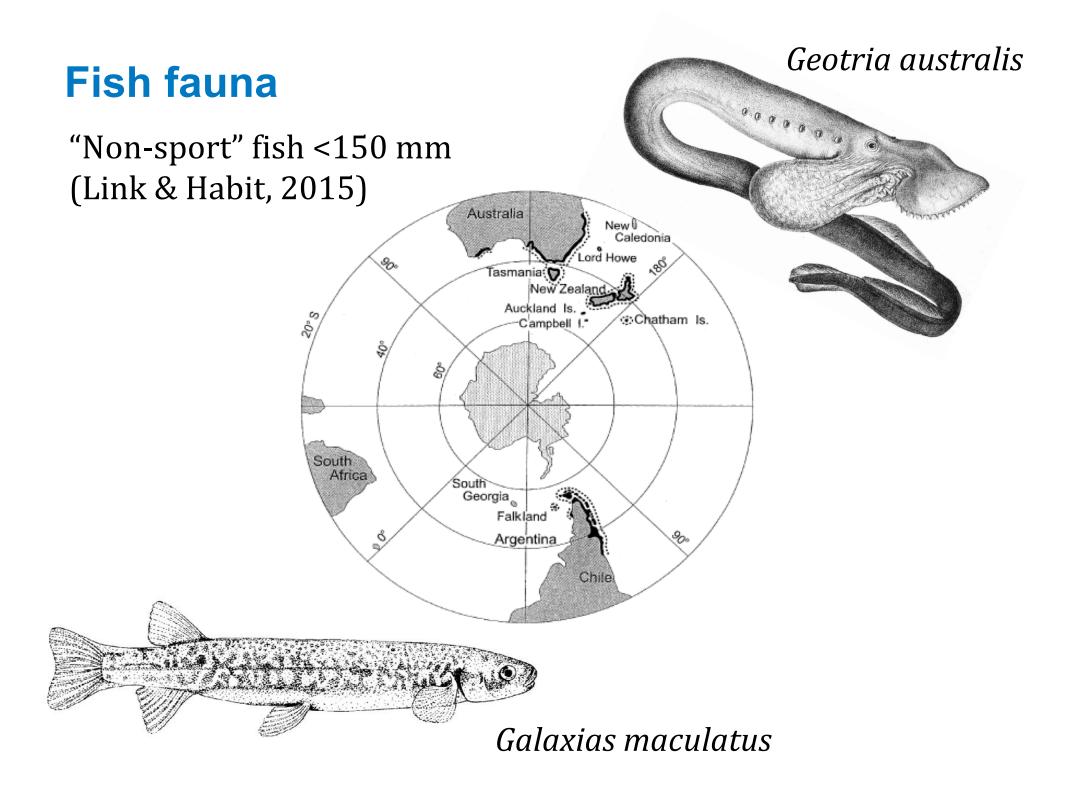

Fish passage in the Southern Hemisphere Network (FISH-Net)

Outline

- Global trends in fishway effectiveness
- The (neglected) temperate Southern Hemisphere
- A new approach to fishway design criteria:
 - Upstream fishway design for "migratory" species
 - Mortality during downstream passage
- Applications to hydropower planning, design and monitoring

Global trends in fishway effectiveness

Global trends in fishway effectiveness

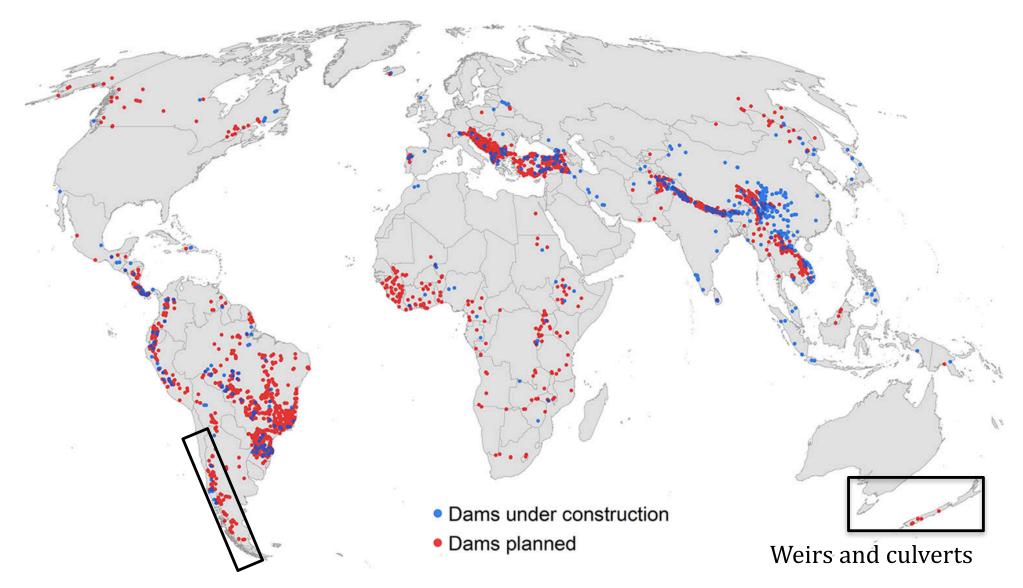


From Kemp (2016) River Res. Appl.

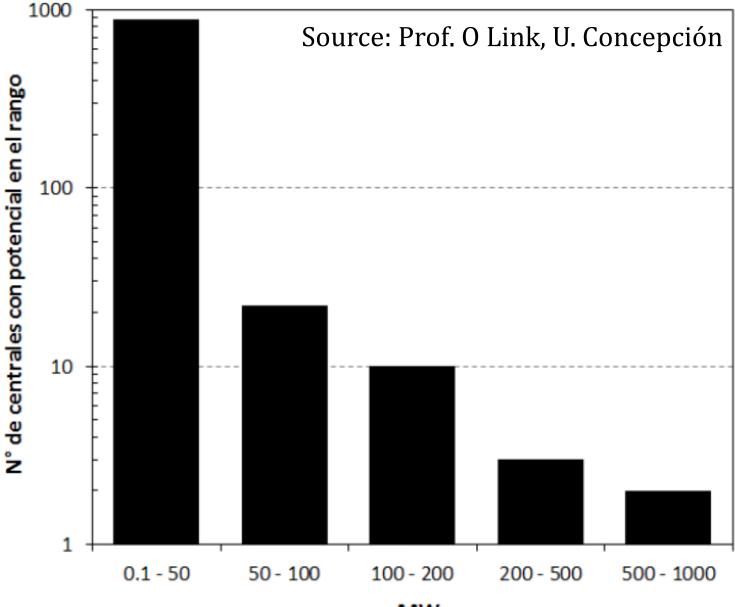
Global trends in fishway effectiveness

RIVER RESEARCH AND APPLICATIONS River Res. Applic. (2016) Published online in Wiley Online Library **FISH and FISHERIES** META FISH Contents lists available at ScienceDirect **Ecological Engineering** Interno Eff journal homepage: www.elsevier.com/locate/ecoleng his The development of fish passage research in a historical context David Christos Katopodis^{a,*}, John G. Williams^{b,1} Centre 2424 ^a Katopodis Ecohydraulics Ltd., 122 Valence Avenue, Winnipeg, MB, Canada, R3T 3W7 ^b National Marine Fisheries Service – NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. East, Seattle, WA 98112-2097, USA .SS ARTICLE INFO ABSTRACT orapo de Leoguiou en Leeneregiu de Lreunque e conservação de Leenroos Leogueros e Liurecos estideit, Western Paraná State University (UNIOESTE), Toledo, Paraná, Brazil ^b US Geological Survey, Mississippi Cooperative Fish and Wildlife Research Unit, USA ^c Departamento de Biologia, Núcleo de Pesquisa em Ictiologia, Limnologia e Aquicultura-Nupélia, FA Maringá State University (UEM), Maringá, Paraná, Brazil ^d Itaipu Binacional, Foz do Iguaçu, Paraná, Brazil Title: Structures assisting the migrations of non-salmonid fish: Latin America... More details Español

The temperate Southern Hemisphere

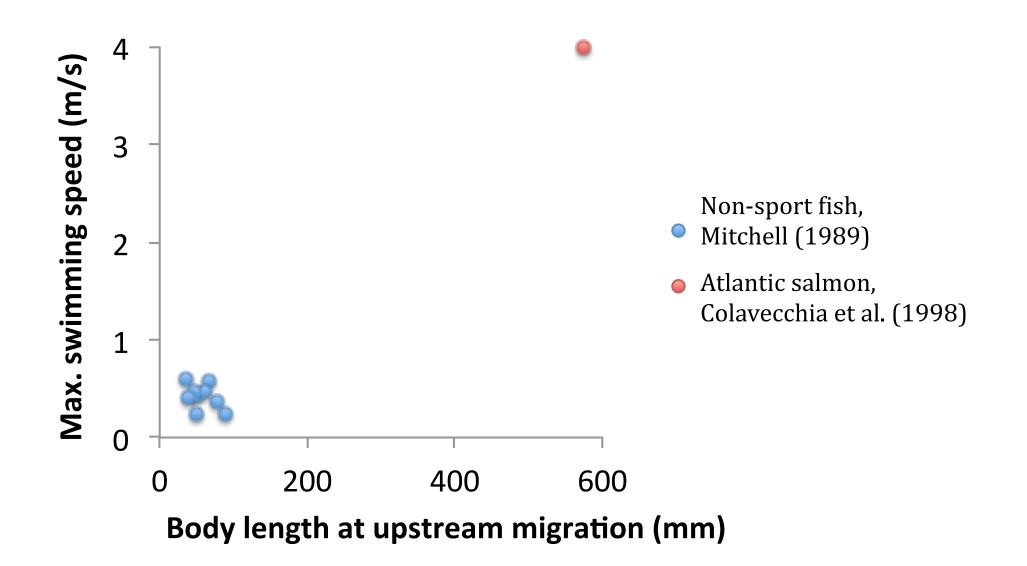

Chilean freshwater species

Order	Family	Species	Conservation status	Life-history
Petromyzontiforms	Geotridae	Geotria australis	Vulnerable	Anadromous
	Mordaciidae	Mordacia lapicida	Endangered	Anadromous
Characiforms	Characidae	Cheirodon pisciculus	Vulnerable	Resident
		Cheirodon galusdae	Vulnerable	Resident
		Cheirodon kiliani	Endangered	Resident
		Cheirodon australe	Vulnerable	Resident
Siluriforms	Nematogenyidae	Nematogenys inermis	Endangered	Resident
	Trichomycteridae	Bullockia maldonadoi	Endangered	Resident
		Trichomycterus areolatus	Vulnerable	Resident
		Trichomycterus chiltoni	Endangered	Resident
	Diplomystidae	Diplomystes chilensis	Endangered	Resident
		Diplomystes nahuelbutaensis	Endangered	Resident
		Diplomystes camposensis	Endangered	Resident
		Diplomystes incognitus	Not classified	Resident
Galaxiforms	Galaxiidae	Galaxias maculatus	Vulnerable	Catadromous*
		Galaxias globiceps	Endangered	Resident
		Galaxias platei	Least concern	Resident
		Brachygalaxias bullocki	Vulnerable	Resident
		Aplochiton zebra	Endangered	Resident
		Aplochiton marinus	Endangered	Marine-estuarine
		Aplochiton taeniatus	Endangered	Catadromous**
Artheriniforms	Artherinopsidae	Basilichthys microlepidotus	Vulnerable	Resident
		Odontesthes mauleanum	Vulnerable	Resident
		Odontesthes brevianalis	Vulnerable	Resident - Estuarine
Perciforms	Percichthyidae	Percichthys trucha	Near threatened	Resident
		Percichthys melanops	Vulnerable	Resident
	Perciliidae	Percilia irwini	Endangered	Resident
		Percilia gillissi	Endangered	Resident
Mugiliforms	Mugilidae	Mugil cephalus	Least concern	Catadromous


Adapted from Link & Habit (2015) Rev. Environ. Sci. Biotechnol. 14 (1) 9-21.

Hydropower pressure

Zarfl et al. (2015) Aquat. Sci. 77 (1) 161-170.



Rapid hydropower development in Chile

MW

"Non-sport" fish

A new approach to fishway design criteria

Design criteria

- Approach:
 - Systematic evidence review (Eco Evidence)

Design criteria

- Approach:
 - Systematic evidence review (Eco Evidence)
 - Expert elicitation workshops

Design criteria

- Approach:
 - Systematic evidence review (Eco Evidence)
 - Expert elicitation workshops
 - Bayesian Networks

Velocity (m/s) Substrate Depth (m) <0.3 33.3 0.3-0.7 33.3 >0.7 33.3 <0.15 50.0 Fine 0.15-0.65 50.0 Gravel >0.65 Coarse B. australis (ad.) B. australis (juv.) B. maldonadoi (ad.) B. maldonadoi (juv.) Very high 🛛 16.7 🗖 /ery high 167 Very high Verv hiah High High 33.3 High 16.7 High 16.7 Medium 50.0 Medium 50.0 Medium 16.7 Medium 50.0 66.7 33.3 Low 33.3 Low Low Low 01 1.67 ± 1.1 1.83 ± 0.69 1.83 ± 0.69 2.67 ± 0.75 Percilia spp. (ad.) T. areolatus (ad.) T_areolatus (iuv.) Percilia spp. (juv.) Very high 33.3 Very high 16.7 Very high 33.3 Very high 16.7 🔳 33.3 33.3 16.7 High High High High 16.7 Medium 16.7 Medium 50.0 Medium 50.0 Medium 33.3 50.0 Low Low Low 0 Low 2.5 ± 0.96 2.17 ± 1.3 2 ± 1 2.83 ± 0.9 P. trucha (ad.) P. trucha (juv.) Cheirodon spp. (ad.) Cheirodon spp. (juv.) Very high 🛛 16.7 🗖 Very high 16.7 🔳 Very high 0 Very high 01 50.0 16.7 33.3 50.0 High High 33.3 📥 High High 33.3 Medium 16.7 Medium 50.0 Medium Medium 16.7 🔳 Low 66.7 Low 0 Low Low 1.67 ± 1.1 2.67 ± 0.75 2.33 ± 0.75 1.67 ± 0.75