

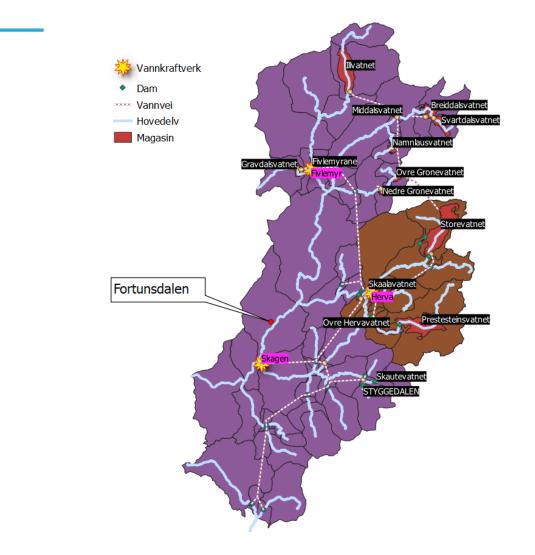
SIMPLE ESTIMATION OF POTENTIAL FLOOD CONTROL CONTRIBUTION FROM HYDROPOWER

1

Bendik Hansen

SINTEF Energy Research

27/05/2020


Background

- Part of ongoing work on extending *Environmental Design* in the research center *Hydrocen*
- Describe hydropower reservoirs' ability to mitigate flood for a point downstream
 - Both one single reservoir in a larger system and the system as a whole
 - Intended for systems with multiple reservoirs
- Based on readily available data
 - Reservoir capacity
 - Drawdown capacity
 - Typical reservoir filling throughout the year
 - Yearly runoff
 - Curves for the relationship between degree of regulation and flood dampening*

Example of output

	Flood dampening potential of individual reservoir in the system		
	1/5	1/9	
Gravdalsvatnet	None	None	None
Fivlemyrane	None	None	None
Illvatnet	Low	Low	None
Middalsvatnet	None	None	None
Breiddalsvatnet	Low	None	None
Svartdalsvatnet	None	None	None
Namslausvatnet	None	None	None
Øvre Grønevatnet	None	None	None
Nedre Grønevatnet	None	None	None
Storevatnet	Low	Low	None
Skålavatnet	Low	None	Low
Øvre Hervavatnet	None	None	None
Prestensteinsvatnet	Moderate	Moderate	None
	Total flood dampening potential		
	1/5	1/7	1/9
Flood peak reduction	0.34	0.25	0.50
Classification	Major	High	Major

() SINTEF

METHOD

Method (1)

For each reservoir in the system:

- 1. Gather data (typical filling, capacity, drawdown capacity, yearly runoff)
- 2. Find typical available reservoir capacity for the relevant days of the year
- Calculate available capacity assuming 7 and 3 days of drawdown (spring/autumn, Norway)
- 4. Calculate **available** degree of regulation when flood typically arrives
- 5. Use flood dampening curves to find local and total flood dampening from each reservoir
 - The reservoir's contribution towards the total is dependent on the area/runoff of the total catchment it covers
 SINTEF

Method (2)

- Limit "total flood dampening" from a reservoir to "significant dampening"
 - Sum up the contributions from all the reservoirs and see what % the total is
 - 100% reduction of flood peak does not serve a purpose. We have assumed that the upper limit for what is "significant dampening" is 40% flood peak reduction.
 - If a reservoir's contribution towards the total does not contribute to the significant dampening, it is not counted as a flood dampening potential
 - Ex:
 - Total dampening with reservoir=25%, without=15% -> reservoir contributes 10%p significant dampening
 - Total dampening with reservoir=45%, without=35% -> reservoir contributes 5%p significant dampening

Method (3)

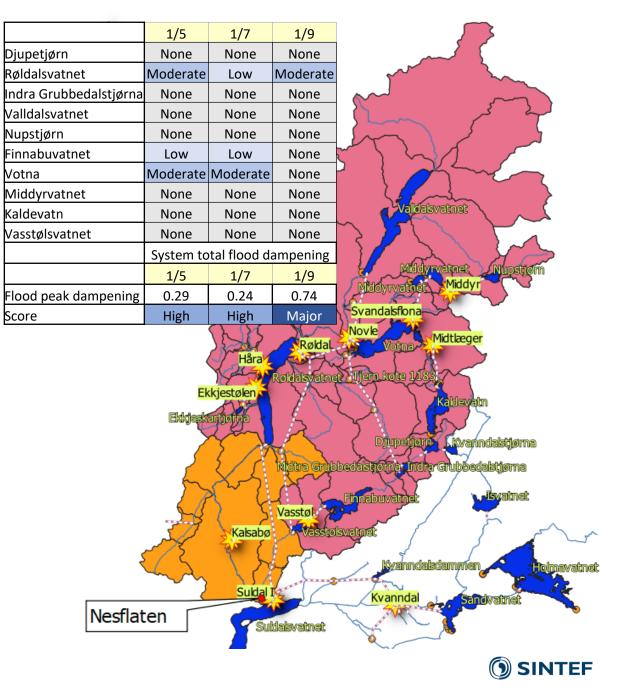
- 7. Classify each individual reservoir based on contribution towards significant dampening
- 8. Classify the system as a whole based on the total dampening (sum of all reservoir, not reduced to "significant dampening")

Class boundaries

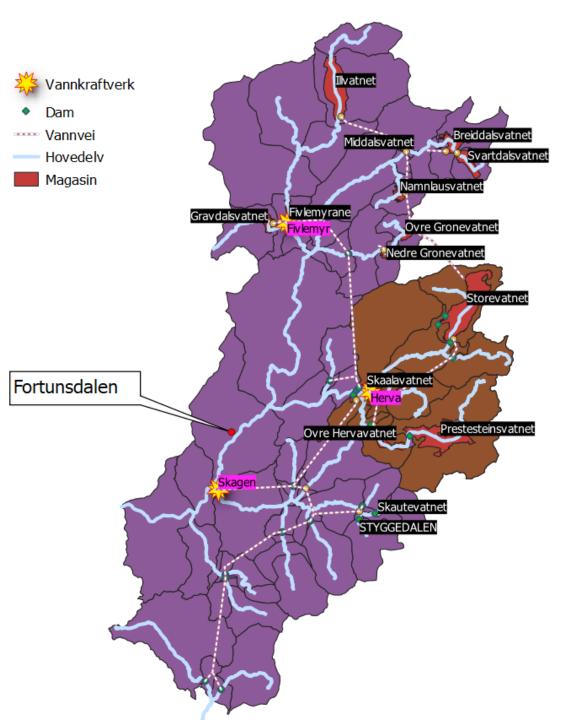
Total system flood reduction potential					
Potential flood peak dampening	<5%	5-10%	10-15%	15-30%	>30%
Flood reduction potential	None	Low	Moderate	High	Major

Individual reservoir flood reduction potential					
Potential contribution to significant total flood peak dampening (percentage points)	<3%	3-7%	7-14%	14-20%	>20%
Flood reduction potential	None	Low	Moderate	High	Major

EXAMPLES OF TEST CASES


Preliminary results, still require discussion and confirmation from the operators

Remove Valldalsvatnet


Suldalsvassdraget

	Flood dampening potential of individual reservoir in the system		
	1/5	1/7	1/9
Djupetjørn	None	None	None
Røldalsvatnet	None	None	None
Indra Grubbedalstjørna	None	None	None
Valldalsvatnet	Moderate	High	None
Nupstjørn	None	None	None
Finnabuvatnet	None	None	None
Votna	None	None	None
Middyrvatnet	None	None	None
Kaldevatn	None	None	None
Vasstølsvatnet	None	None	None
	Total flood dampening potential		
	1/5	1/7	1/9
Flood peak reduction	0.59	0.47	0.83
Classification	Major	Major	Major

Fortunvassdraget

	Flood dampening potential of individual reservoir in the system		
	1/5	1/7	1/9
Gravdalsvatnet	None	None	None
Fivlemyrane	None	None	None
Illvatnet	Low	Low	None
Middalsvatnet	None	None	None
Breiddalsvatnet	Low	None	None
Svartdalsvatnet	None	None	None
Namslausvatnet	None	None	None
Øvre Grønevatnet	None	None	None
Nedre Grønevatnet	None	None	None
Storevatnet	Low	Low	None
Skålavatnet	Low	None	Low
Øvre Hervavatnet	None	None	None
Prestensteinsvatnet	Moderate	Moderate	None
	Total flood dampening potential		
	1/5	1/7	1/9
Flood peak reduction	0.34	0.25	0.50
Classification	Major	High	Major

Application and limitations

Possible applications:

- Concessions (which reservoirs are important for floods)
- Optimal operation and configuration of a system (first sorting)
- Flood protection in a changing climate

Limitations:

- Underlying curves for degree of regulation vs. flood dampening
- Very simplified, many assumptions
- Flood dampening potential for one point, not whole river reach

Technology for a better society