

Unmanned Aerial Systems (UAS) – New opportunities for measuring, mapping and modelling rivers and lakes

European Commission Christian Haas Philipp Thumser Dr. Jeffrey Tuhtan

I AM HYDRO GmbH

Introduction

- Sensors

 RGB
 NIR
 - Thermal
- Applications
- Conclusion

Why UAS?

Current Monitoring strategies:

- No monitoring
- Modelling
- Single Point/ Data

Requirements of Monitoring:

<u>Monitoring strategies/ tools need to</u> picture natural processes in time and scale!

New/ additional Monitoring tools and strategies required:

Low altitudes/ fast repeatability

- \rightarrow High resolution (spatial and temporal)
- → Better learning/ understanding?

- Cameras
 - Post Processing
 - RGB
 - NIR
 - Thermal
 - Real Time Data
 - SLAM Simultaneous Localization and Mapping
- LIDAR (Light Detection and Ranging)
 - IR LIDAR
 - Green LIDAR

Airborne Mapping: Topographic and Bathymetric Survey within one system

4

(Jocham et al., University of Innsbruck)

"Kinetic Depth Effect" (Wallach u. O'Connel 1953) "Interpretation of Structure from Motion" (Ullmann 1979)

Orthomosaic from 780 pictures (16 MP) 2 cm/px resolution

Hydropeaking

Hydropeaking on a gravel bar at river Lech, Germany

- temporal and spatial measurements of up- and down ramping events
- Control and investigate altered ramping rates for mitigation

Classification:

- Supervised & unsupervised classification
- Threshold classification
- Masking
- Segmentation based classification
- Validation and analysis

Software for this approach: ERDAS IMAGINE, Matlab, eCognition & Arc GIS

Comparative illustration of substrate classified map showing spatial distribution of the sediment types:

- 1) <u>Manually</u> mapped substrate (a)
- 2) <u>Automatically</u> mapped substrate (b)

- New approach for bathymetric surveys
 - Up to 100 bathymetric points per square meter
 - Only few callibration points necessary
 - Increased safety for field crew

Low-cost multicamera system (Haas et al. 2016)

RGB orthomosaic

NIR orthomosaic

Vegetation indices from multispectral imagery*

Index	Formula	Description	
DVI	DVI = NIR - RED	Difference Vegetation Index , it is used to separate soil from vegetation. It is sensitive to illuminations conditions.	
SR	$SR = \frac{NIR}{REd}$	Simple Ratio Index shows high values for vegetation and lower ones for soil. Compensates differences in lighting conditions	
NDVI	$NDVI = \frac{NIR - RED}{NIR + REd}$	Normalized Difference Vegetation Index used to estimate amount of vegetation, good to distinguish vegetation from soil. More Robust applicable to both reflectance and Radiance. Reduces the effect of no uniform illumination.	
(* long	s and Vaughan 2010)		

(*Jones and Vaughan, 2010)

multi band imagery

Multi-band image combines visible RGB and NIR

Automated classification of the landscape into user-defined groups

multi band imagery

Vegetated regions identified and grouped using NIR and RGB imagery

- Data used to compare changes in vegetation over different periods
- interpretation aided by overlay with aerial imagery

Thermal imagery

Assessment of:

- Thermopeaking
- Discharge
- Upwelling and downwelling (heat stress)
- Persist "memory effects" of shading and illumination
- Effects of heat sinks (walls, boulders)

1/05/201

Conclusion

- UAVs are a valuable tool for monitoring surface waterbodies and regulated rivers
 - Ecology
 - HydrológyHydraulics
 - Hydraulics
 Morphology

Ecohydraulics

- High spatial and temporal resolution
 - Dynamic processes and changes
 - Hydropeaking
 - Thermopeaking
 - Erosion/Deposition
- Reliable data
 - High Quality
 - Increased quantity
 - Reproducible

- Increased safety aspect for field crew
- Potential for further research and development
 - Hardware
 - Applications
 - Software
- Time and cost efficient method

 Low cost hardware + knowledge
 → High quality output
- Legal framework?

Our aim is to use existing technologies to effectively quantify uncertainty in aquatic environments

christian@iamhydro.com