

Hidden and Untapped Hydropower Opportunities in existing Infrastructures

Multipurpose projects: Overview and return on experience

Vincent Denis (Mhylab)
Annex XVI workshop – July 1st, 2021

Multipurpose use of water

- Almost 30 years of Swiss support to the development of energy recovery in existing or planned infrastructures and more than one century return on experience.
- Water + Difference of level + flow = Potential hydropower
- Drinking water, wastewater, irrigation, ecological flow, fish pass system, navigation locks and dams, cooling systems = Hidden hydro
- Never forget that electricity generation is a secondary function (multipurpose scheme)
- Specific know how is needed as well for the design of the scheme, as for the design of fully adapted equipment.
- Unless specified, Mhylab direct return of experience.

Environmental flow and attraction flow

Le Day (CH) – Environmental flow -126 kW – 2017 Variable speed operation due to variable head. 300 to 600 l/s – 17 m < Hn < 27 m 580'000 kWh/year Production sold to the grid

Verbois (CH) – Environmental flow -348 kW – 2003 2000 l/s – 21 m 2'720'000 kWh/year Production sold to the grid Geos Ingénieurs conseils SA/JMC Engineering

Drinking water turbining (High head)

La Zour (CH) – Savièse Community– 2004 1'800'000 kWh/year Upstream of the reservoir Porduction sold to the grid

3-nozzle Pelton turbine Q = 300 l/s Hn = 217 m 465 kW

Drinking water turbining (Low head)

Poggio Cuculo (I) Nuove Acque – 2010

Single regulated axial turbine

P = 45 kW

Q = 280 - 380 I/s

Hn = 12.5 to 27.0 m

Variable speed operation

360'000 kWh/year

Production used by the treatment plant

Irrigation water

Armary (CH) – 68 kW – 2006 Pressure used for irrigation network during irrigation period

2-nozzle Pelton turbine Hn = 105 m, Q = 90 l/s 580'000 kWh/year - Production sold to the grid

Wastewater turbining – Before treatment

Profray (CH) – 380 kW First installation 1993 -2007 New installation since 2008 Verbier ski ressort wastwater turbining

2-nozzle Pelton turbine
Hn = 430 m, Q = 100 l/s
800'000 kWh/year - Production sold to the grid
O&M around 40h per year

Wastewater turbining – After treatment

Terre-Sainte (CH) – 2016

Treatment plant outlet turbining

2-nozzle Pelton turbine – 110 kW Hn = 430 m, Q = 100 l/s 800'000 kWh/year

Production sold to the grid

Regulated pressure reducer – Carnot type - Q = 0 to 170 l/s

Run off water

La Louve (CH) - 170 kW - 2006 Separation of run off water from wastewater and transport to the Lake.

2-nozzle Pelton turbine Hn = 180 m, Q = 120 l/s 466'000 kWh/year - Production sold to the grid

Amman city area sewage system

New As Samra WWTP

As Samra Inlet small HPP

2 five-nozzle Pelton Pe = $2 \times 830 \text{ kW}$

 $\Delta Z = 104 \text{ m}$ E = 10.5 GWh/year

 $Q_n = 2 \times 1.25 \text{ m}^3/\text{s}$ Commissioning : April 2007

 $H_n = 79.3 \text{ m}$ @ Qn Production used on site

Raw water turbines design challenges

- Trashes driven by the flow
- Strong head variation between part and nominal load
- Penstock's length (> 30 km)
- Strong H₂S concentration

As Samra - Outlet small HPP

		Phase I	Phase II
ΔΖ	m	42.1	42.1
Q_{max}	m ³ /s	4.6	1.4
H _n	m	41.6	36.9
Nb of units	_	2	1
Q _{Nt}	m³/s	2.3	1.4
P _{el}	kW	2 x 750	490
Yearly production	GWh		8.5

Treated water turbines design challenges

- Residual pollutant load
- Residual Cl₂ load due to water chlorination

Conclusions

- Wide return on experience in Switzerland and abroad
- Technically and economically feasible
- Self consumption particularly interesting in wastewater treatment plants
- Low O&M costs when well designed
- Generally well accepted
- Simplified authorization procedures

Thank you for your attention!

Vincent Denis vincent.denis@mhylab.com

+41 24 442 87 87

c/o Mhylab, chemin du Bois Jolens 6, CH-1354 Montcherand Switzerland

https://www.linkedin.com/company/66193004/admin/www.mhylab.com